Insights into rare immune cells that keep blood stem cells in a youthful state may lead to better treatments

October 22, 2012
Insights into rare immune cells that keep blood stem cells in a youthful state may lead to better treatments
Prostaglandins guard stem cells by increasing the production of an inhibitory factor in the mesenchymal bone marrow cells. Mesenchymal cells are marked with a green protein (left); the inhibitory factor is red (center). Combined image (right): Treatment with prostaglandins (bottom) increases the secretion of the inhibitory factor

Hiding deep inside the bone marrow are special cells. They wait patiently for the hour of need, at which point these blood forming stem cells can proliferate and differentiate into billions of mature blood immune cells to help the body cope with infection, for example, or extra red blood cells for low oxygen levels at high altitudes. Even in emergencies, however, the body keeps to a long-term plan: It maintains a reserve of undifferentiated stem cells for future needs and crises. A research team headed by Prof. Tsvee Lapidot of the Institute's immunology Department recently discovered a new type of bodyguard that protects stem cells from over-differentiation. In a paper that appeared in Nature Immunology, they revealed how this rare, previously unknown sub-group of activated immune cells keeps the stem cells in the bone marrow "forever young."

Blood forming stem cells live in comfort in the bone marrow, surrounded by an entourage of support cells that cater to their needs and direct their development – the mesenchymal cells. But the research team, which included postdoctoral fellow Dr. Aya Ludin, Prof. Steffen Jung of the Immunology Department and his group, and Ziv Porat of the Biological Services Unit, discovered another type of support cell for the stem cells. These are an offshoot of the macrophage family, literally the "big eaters" of the immune system that are important, for instance, for bacterial clearance. The team found, however, that a rare sub-population of the bone-marrow has another role to play. Each of these rare macrophages can take a stem cell under its wing and prevent its differentiation.

Probing more deeply, the researchers revealed, in precise detail, how these macrophages guard the stem cells. They secrete substances called , which are absorbed by the stem cells. In a chain of biochemical events, these substances delay differentiation and preserve the youthful state of the stem cells. In addition, the prostaglandins work on the neighboring , activating the secretion of a delaying substance in them and increasing the production of receptors for this substance on the stem cells, themselves. This activity, says Lapidot, may help the non-dividing stem cells survive chemotherapy – a known phenomenon. Macrophages also live through the treatment, and they respond by increasing their prostaglandin output, thus heightening their vigilance in protecting the stem cells.

The bodyguard macrophages also increase their activity in times of infection. While other members of the macrophage family are recruited to fight the pathogens, their cousins in the bone marrow are hard at work ensuring that a pool of stem cells will resist the urge to differentiate.

In previous work in Lapidot's lab, it was discovered that prostaglandin treatments can improve the number and quality of stem cells. This insight is currently being tested by doctors in clinical transplantation trials for the use of stem cells from umbilical cord blood to treat adult leukemia patients. These trials are showing that prior treatment with prostaglandins improves migration and repopulation potential, enabling the small quantities of cord blood stem cells to better cure the patients. "The present study hints at the possibility of further increasing the support for bone marrow stem cells by exploring this intriguing connection between the and ," says Lapidot. "An understanding of the mechanisms at work in these cells might improve the success of stem cell transplantation, especially that of umbilical blood."

Explore further: Researchers find way to help donor adult blood stem cells overcome transplant rejection

More information: www.nature.com/ni/journal/vaop … nt/full/ni.2408.html

Related Stories

Researchers find way to help donor adult blood stem cells overcome transplant rejection

August 4, 2011
Findings by UT Southwestern Medical Center researchers may suggest new strategies for successful donor adult stem cell transplants in patients with blood cancers such as leukemia, lymphoma and myeloma.

Recommended for you

Researchers discover pathway by which blood cells release a potent signalling factor

October 23, 2017
The bloodborne chemical signal sphingosine-1-phosphate (S1P) is released by blood cells to regulate immune and vascular functions. How S1P is released to the circulation was unknown for a long time, until now. On October ...

The skinny on lipid immunology

October 20, 2017
Phospholipids - fat molecules that form the membranes found around cells - make up almost half of the dry weight of cells, but when it comes to autoimmune diseases, their role has largely been overlooked. Recent research ...

Bacterial pathogens outwit host immune defences via stealth mechanisms

October 20, 2017
Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Researchers release the brakes on the immune system

October 18, 2017
Many tumors possess mechanisms to avoid destruction by the immune system. For instance, they misuse the natural "brakes" in the immune defense mechanism that normally prevent an excessive immune response. Researchers at the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.