Insights into rare immune cells that keep blood stem cells in a youthful state may lead to better treatments

October 22, 2012
Insights into rare immune cells that keep blood stem cells in a youthful state may lead to better treatments
Prostaglandins guard stem cells by increasing the production of an inhibitory factor in the mesenchymal bone marrow cells. Mesenchymal cells are marked with a green protein (left); the inhibitory factor is red (center). Combined image (right): Treatment with prostaglandins (bottom) increases the secretion of the inhibitory factor

Hiding deep inside the bone marrow are special cells. They wait patiently for the hour of need, at which point these blood forming stem cells can proliferate and differentiate into billions of mature blood immune cells to help the body cope with infection, for example, or extra red blood cells for low oxygen levels at high altitudes. Even in emergencies, however, the body keeps to a long-term plan: It maintains a reserve of undifferentiated stem cells for future needs and crises. A research team headed by Prof. Tsvee Lapidot of the Institute's immunology Department recently discovered a new type of bodyguard that protects stem cells from over-differentiation. In a paper that appeared in Nature Immunology, they revealed how this rare, previously unknown sub-group of activated immune cells keeps the stem cells in the bone marrow "forever young."

Blood forming stem cells live in comfort in the bone marrow, surrounded by an entourage of support cells that cater to their needs and direct their development – the mesenchymal cells. But the research team, which included postdoctoral fellow Dr. Aya Ludin, Prof. Steffen Jung of the Immunology Department and his group, and Ziv Porat of the Biological Services Unit, discovered another type of support cell for the stem cells. These are an offshoot of the macrophage family, literally the "big eaters" of the immune system that are important, for instance, for bacterial clearance. The team found, however, that a rare sub-population of the bone-marrow has another role to play. Each of these rare macrophages can take a stem cell under its wing and prevent its differentiation.

Probing more deeply, the researchers revealed, in precise detail, how these macrophages guard the stem cells. They secrete substances called , which are absorbed by the stem cells. In a chain of biochemical events, these substances delay differentiation and preserve the youthful state of the stem cells. In addition, the prostaglandins work on the neighboring , activating the secretion of a delaying substance in them and increasing the production of receptors for this substance on the stem cells, themselves. This activity, says Lapidot, may help the non-dividing stem cells survive chemotherapy – a known phenomenon. Macrophages also live through the treatment, and they respond by increasing their prostaglandin output, thus heightening their vigilance in protecting the stem cells.

The bodyguard macrophages also increase their activity in times of infection. While other members of the macrophage family are recruited to fight the pathogens, their cousins in the bone marrow are hard at work ensuring that a pool of stem cells will resist the urge to differentiate.

In previous work in Lapidot's lab, it was discovered that prostaglandin treatments can improve the number and quality of stem cells. This insight is currently being tested by doctors in clinical transplantation trials for the use of stem cells from umbilical cord blood to treat adult leukemia patients. These trials are showing that prior treatment with prostaglandins improves migration and repopulation potential, enabling the small quantities of cord blood stem cells to better cure the patients. "The present study hints at the possibility of further increasing the support for bone marrow stem cells by exploring this intriguing connection between the and ," says Lapidot. "An understanding of the mechanisms at work in these cells might improve the success of stem cell transplantation, especially that of umbilical blood."

Explore further: Researchers find way to help donor adult blood stem cells overcome transplant rejection

More information: www.nature.com/ni/journal/vaop … nt/full/ni.2408.html

Related Stories

Researchers find way to help donor adult blood stem cells overcome transplant rejection

August 4, 2011
Findings by UT Southwestern Medical Center researchers may suggest new strategies for successful donor adult stem cell transplants in patients with blood cancers such as leukemia, lymphoma and myeloma.

Recommended for you

Exposure to larger air particles linked to increased risk of asthma in children

December 15, 2017
Researchers at The Johns Hopkins University report statistical evidence that children exposed to airborne coarse particulate matter—a mix of dust, sand and non-exhaust tailpipe emissions, such as tire rubber—are more ...

Bioengineers imagine the future of vaccines and immunotherapy

December 14, 2017
In the not-too-distant future, nanoparticles delivered to a cancer patient's immune cells might teach the cells to destroy tumors. A flu vaccine might look and feel like applying a small, round Band-Aid to your skin.

Immune cells turn back time to achieve memory

December 13, 2017
Memory T cells earn their name by embodying the memory of the immune system - they help the body remember what infections or vaccines someone has been exposed to. But to become memory T cells, the cells go backwards in time, ...

Steroid study sheds light on long term side effects of medicines

December 13, 2017
Fresh insights into key hormones found in commonly prescribed medicines have been discovered, providing further understanding of the medicines' side effects.

The immune cells that help tumors instead of destroying them

December 12, 2017
Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient's immune system against the tumor. In the past twenty years, ...

Cancer gene plays key role in cystic fibrosis lung infections

December 12, 2017
PTEN is best known as a tumor suppressor, a type of protein that protects cells from growing uncontrollably and becoming cancerous. But according to a new study from Columbia University Medical Center (CUMC), PTEN has a second, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.