Interaction between auditory cortex and amygdala responsible for our response to unpleasant sounds, research finds

October 10, 2012

(Medical Xpress)—Heightened activity between the emotional and auditory parts of the brain explains why the sound of chalk on a blackboard or a knife on a bottle is so unpleasant.

In a study published today in the and funded by the Wellcome Trust, Newcastle University scientists reveal the interaction between the region of the brain that processes sound, the auditory cortex, and the , which is active in the processing of when we hear unpleasant sounds.

Brain imaging has shown that when we hear an unpleasant noise the amygdala modulates the response of the auditory cortex heightening activity and provoking our negative reaction.

"It appears there is something very primitive kicking in," says Dr Sukhbinder Kumar, the paper's author from Newcastle University. "It's a possible distress signal from the amygdala to the auditory cortex."

Researchers at the Wellcome Trust Centre for Neuroimaging at UCL and Newcastle University used functional (fMRI) to examine how the brains of 13 volunteers responded to a range of sounds. Listening to the noises inside the scanner they rated them from the most unpleasant - the sound of knife on a bottle – to pleasing - bubbling water. Researchers were then able to study the to each type of sound.

Researchers found that the activity of the amygdala and the auditory cortex varied in direct relation to the ratings of perceived unpleasantness given by the subjects. The emotional part of the brain, the amygdala, in effect takes charge and modulates the activity of the auditory part of the brain so that our perception of a highly unpleasant sound, such as a knife on a bottle, is heightened as compared to a soothing sound, such as bubbling water.

Analysis of the acoustic features of the sounds found that anything in the frequency range of around 2,000 to 5,000 Hz was found to be unpleasant. Dr Kumar explains: "This is the frequency range where our ears are most sensitive. Although there's still much debate as to why our ears are most sensitive in this range, it does include sounds of screams which we find intrinsically unpleasant."

Scientifically, a better understanding of the brain's reaction to noise could help our understanding of medical conditions where people have a decreased sound tolerance such as hyperacusis, misophonia (literally a "hatred of sound") and autism when there is sensitivity to noise.

Professor Tim Griffiths from Newcastle University, who led the study, says: "This work sheds new light on the interaction of the amygdala and the . This might be a new inroad into emotional disorders and disorders like tinnitus and migraine in which there seems to be heightened perception of the unpleasant aspects of sounds."

MOST UNPLEASANT SOUNDS
Rating 74 sounds, people found the most unpleasant noises to be:
1. Knife on a bottle
2. Fork on a glass
3. Chalk on a blackboard 
4. Ruler on a bottle
5. Nails on a blackboard

Explore further: Rewired visual input to sound-processing part of the brain leads to compromised hearing

Related Stories

Rewired visual input to sound-processing part of the brain leads to compromised hearing

August 22, 2012
Scientists at Georgia State University have found that the ability to hear is lessened when, as a result of injury, a region of the brain responsible for processing sounds receives both visual and auditory inputs.

Brain waves control the impact of noise on sleep

September 6, 2011
During sleep, our perception of the environment decreases. However the extent to which the human brain responds to surrounding noises during sleep remains unclear. In a study published this week in Proceedings of the National ...

Unraveling the mysteries of the maternal brain: Odors influence the response to sounds

October 19, 2011
Motherhood is associated with the acquisition of a host of new behaviors that must be driven, at least in part, by alterations in brain function. Now, new research published by Cell Press in the October 20 issue of the journal ...

Recommended for you

After 15 years in a vegetative state, nerve stimulation restores consciousness

September 25, 2017
A 35-year-old man who had been in a vegetative state for 15 years after a car accident has shown signs of consciousness after neurosurgeons implanted a vagus nerve stimulator into his chest. The findings reported in Current ...

Overturning widely held ideas: Visual attention drawn to meaning, not what stands out

September 25, 2017
Our visual attention is drawn to parts of a scene that have meaning, rather than to those that are salient or "stick out," according to new research from the Center for Mind and Brain at the University of California, Davis. ...

The rat race is over: New livestock model for stroke could speed discovery

September 25, 2017
It is well-known in the medical field that the pig brain shares certain physiological and anatomical similarities with the human brain. So similar are the two that researchers at the University of Georgia's Regenerative Bioscience ...

A brain system that builds confidence in what we see, hear and touch

September 25, 2017
A series of experiments at EPFL provide conclusive evidence that the brain uses a single mechanism (supramodality) to estimate confidence in different senses such as audition, touch, or vision. The study is published in the ...

Brain guides body much sooner than previously believed

September 25, 2017
The brain plays an active and essential role much earlier than previously thought, according to new research from Tufts University scientists which shows that long before movement or other behaviors occur, the brain of an ...

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Parsec
5 / 5 (1) Oct 11, 2012
I am most sensitive to repetitive clicking noises only at certain repetition rates. In other words, a repeated click that is too slow or too fast doesn't register as unpleasant at all, while the chirping of a seat-belt not being fastened drives me up a wall.

Does that make me weird? Or are the auto manufacturers just masochistic? Maybe both?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.