Gene knockout stops immune cell development

December 11, 2012, Wellcome Trust Sanger Institute
The working model of Bcl11a in hematopoiesis. Credit: Yong Yu, Genome Research Limited

(Medical Xpress)—Researchers at the Wellcome Trust Sanger Institute have identified the key gene in ensuring that our immune defences develop infection-fighting cells. No cells of the adaptive immune system - key to attacking and destroying bacteria and other pathogens - develop in the absence of the gene Bcl11a.

The result will help to understand the and how it can fail in disease, as well as possibly allowing the development of functioning human immune systems in mice for research and development of treatments.

Our immune system has two arms: the adaptive and innate pathways. The adaptive immune system leads to infection- and cancer-fighting cells called , T cells and : these all share a , or lymphoid progenitor.

The team had shown earlier that Bcl11a was important for development of some in . In the new research they looked at the role of this gene in . They knocked out Bcl11a and looked at development of the .

They were surprised to see that no cells of the adaptive system developed in the mice.

"This is the cornerstone of building an effective immune system," says Dr Pentao Liu, who led the research. "It is perhaps the first time that anyone has found a single gene that is absolutely essential for development of cells of our entire adaptive immune system.

"With this new discovery, we can understand better how our immune system is built and begin to learn how we might repair it."

The protein produced by Bcl11a controls the activity of other genes: it is part of a network of components that regulate cell development and the imbalance caused by a lack of Bcl11a leads to the death of the of the adaptive immune system. By contrast, overactivity of Bcl11a is known to cause lymphomas.

"This is the most important gene in the ," says PhD student Yong Yu, who did the research while at the Wellcome Trust Sanger Institute. "Without it, there are no cells of this system, no antibodies to fight infection.

"We have begun to tease apart the networks that have to work in balance to give us a healthy immune system."

One member of the Bcl11a network is a gene called p53, known to be important in controlling cell division and, when mutated, important in driving cancer development. If p53 also is inactivated in mice that lack Bcl11a, some cells of the immune system develop. Uncovering these interactions will drive a better understanding of disease of the immune system.

Mice that lack functional Bcl11a and hence lack a functional immune system could be important in studying human cells and human immune biology. By adding human disease cells to the immune-deficient mice, researchers could define the function of human genes in a humanised environment in order, for example, to examine the role of genes in transplant biology.

Bcl11a also has a role in development of oxygen-carrying red blood cells: in 2011, researchers showed that silencing Bcl11a in mice could reverse sickle-cell disease.

"Our discovery shows that Bcl11a has a central and essential role in the immune system, alongside its other functions," continues Dr Liu. "It is work that our mouse models have driven. Understanding the complex interactions of networks of genes in this way will be essential for better understanding human disease and in finding better ways to diagnose and treat patients.

"We already see that Bcl11a is involved in lymphoma and anaemia. We can now look to see if it has a role in other human disease."

Explore further: Antibodies are not required for immunity against some viruses

More information: Yu, Y et al., Bcl11a is essential for lymphoid development and negatively regulates p53, Journal of Experimental Medicine 2012
DOI: 10.1084/jem.20121846.

Related Stories

Antibodies are not required for immunity against some viruses

March 1, 2012
A new study turns the well established theory that antibodies are required for antiviral immunity upside down and reveals that an unexpected partnership between the specific and non-specific divisions of the immune system ...

Mechanism for esophageal cancer uncovered

April 11, 2011
A gene thought to be associated with cancer development can be a tumor suppressor gene in mice, researchers have discovered. Understanding which genes are involved in spreading cancer could lead to future therapies.

Immune cell migration is impeded in Huntington's disease

November 19, 2012
Huntington disease (HD) is an incurable neurodegenerative disease caused by a mutation in the huntingtin gene (htt). Though most of the symptoms of HD are neurological, the mutant HTT protein is expressed in non-neural cells ...

Recommended for you

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

How the immune system's key organ regenerates itself

January 15, 2018
With advances in cancer immunotherapy splashing across headlines, the immune system's powerful cancer assassins—T cells—have become dinner-table conversation. But hiding in plain sight behind that "T" is the organ from ...

Immunosuppressive cells in newborns play important role in controlling inflammation in early life

January 15, 2018
New research led by The Wistar Institute, in collaboration with Sun Yat-sen University in China, has characterized the transitory presence of myeloid-derived suppressor cells (MDSCs) in mouse and human newborns, revealing ...

Memory loss from West Nile virus may be preventable

January 15, 2018
More than 10,000 people in the United States are living with memory loss and other persistent neurological problems that occur after West Nile virus infects the brain.

Mould discovery in lungs paves way for helping hard to treat asthma

January 15, 2018
A team at The University of Manchester have found that in a minority of patients they studied, a standard treatment for asthma—oral steroids—was associated with increased levels of the treatable mould Aspergillus in the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.