Pioneering study reveals association of chronic pain and broad epigenetic changes

February 15, 2013, McGill University

Injuries that result in chronic pain, such as limb injuries, and those unrelated to the brain are associated with epigenetic changes in the brain which persist months after the injury, according to researchers at McGill University. Epigenetics explores how the environment – including diet, exposure to contaminants and social conditions such as poverty – can have a long-term impact on the activity of our genes.

The team led by Prof. Laura Stone, a professor at the Faculty of Dentistry and the Alan Edwards Centre for Research on Pain, and Prof. Moshe Szyf, a professor at the Faculty of Medicine's Department of Pharmacology and Therapeutics, have discovered a mechanism that embeds the memory of an injury in the way the DNA is marked in the by a chemical coating called or DNA methylation. The researchers report in the journal , that if the symptoms of are attenuated, the abnormal changes in DNA methylation could be reversed.

Research pioneered at McGill has previously shown that experiences and not solely chemicals alter the way genes are marked epigenetically, impacting our behavior and well-being. DNA methylation, an epigenetic mark on the gene itself, can therefore serve as a "memory" of an experience that will alter the way the gene functions long after the original experience is gone. The crucial difference between "genetic" and "epigenetic" causes for disease is that genetic changes are inherited and fixed, while epigenetic changes in contrast are possibly reversible.

The McGill research is the first to link chronic pain to genome-wide epigenetic changes in the brain. "Injury results in long-term changes to the DNA markings in the brain; our work shows it might be possible to reverse the effects of chronic pain by interventions using either behavioral or pharmacological means that interfere with DNA methylation, says Prof. Szyf. "Our findings have the potential to completely alter the way we treat chronic pain."

In this study, the researchers show that behavioral interventions that reverse chronic pain also remove differences in DNA methylation in the brain.

The team report alterations in global are observed in the prefrontal cortex (PFC) and amygdala of mice many months following injury to a nerve, and that environmental enrichment reduces both the pain and the pathological changes in PFC global methylation. They also found that the total amount of global methylation in the PFC significantly correlates with pain severity.

"These results suggest that epigenetic modulation mediates chronic pain-related alterations in the central nervous system (CNS), forming a "memory trace" for pain in the brain that can be targeted therapeutically, says Stone. Since respond to environmental changes, these mechanisms represent a mind-body link between chronic pain and the brain at the genomic level. "The implications of this work are wide reaching and may alter the way we think about chronic pain diagnosis, research and treatment".

Explore further: Treatment of chronic low back pain can reverse abnormal brain activity and function

Related Stories

Treatment of chronic low back pain can reverse abnormal brain activity and function

May 17, 2011
It likely comes as no surprise that low back pain is the most common form of chronic pain among adults. Lesser known is the fact that those withchronic pain also experience cognitive impairments and reduced gray matter in ...

Neuron memory key to taming chronic pain

February 13, 2012
For some, the pain is so great that they can't even bear to have clothes touch their skin. For others, it means that every step is a deliberate and agonizing choice. Whether the pain is caused by arthritic joints, an injury ...

Evidence of biological process that embeds social experience in DNA that affects entire networks of genes

October 11, 2012
(Medical Xpress)—Early life experience results in a broad change in the way our DNA is "epigenetically" chemically marked in the brain by a coat of small chemicals called methyl groups, according to researchers at McGill ...

Study shows early brain changes predict which patients develop chronic pain

July 1, 2012
When people have similar injuries, why do some end up with chronic pain while others recover and are pain free? The first longitudinal brain imaging study to track participants with a new back injury has found the chronic ...

Acute stress alters control of gene activity

August 15, 2012
Acute stress alters the methylation of the DNA and thus the activity of certain genes. This is reported by researchers at the Ruhr-Universität Bochum together with colleagues from Basel, Trier and London for the first ...

Childhood trauma has life-long effect on genes and the brain

February 23, 2009
(PhysOrg.com) -- McGill University and Douglas Institute scientists have discovered that childhood trauma can actually alter your DNA and shape the way your genes work. This confirms in humans earlier findings in rats, that ...

Recommended for you

Gene editing possible for kidney disease

November 16, 2018
For the first time scientists have identified how to halt kidney disease in a life-limiting genetic condition, which may pave the way for personalised treatment in the future.

Progress in genetic testing of embryos stokes fears of designer babies

November 16, 2018
Recent announcements by two biotechnology companies have stoked fears that designer babies could soon be an option for those who can afford to pick and choose which features they want for their offspring. The companies, MyOme ...

DICE: Immune cell atlas goes live

November 15, 2018
Compare any two people's DNA and you will find millions of points where their genetic codes differ. Now, scientists at La Jolla Institute for Immunology (LJI) are sharing a trove of data that will be critical for deciphering ...

Ashkenazi Jewish founder mutation identified for Leigh Syndrome

November 15, 2018
Over 30 years ago, Marsha and Allen Barnett lost their sons to a puzzling childhood disease that relentlessly attacked their nervous systems and sapped their energy. After five-year-old Chuckie died suddenly in 1981, doctors ...

Drug candidate may recover vocal abilities lost to ADNP syndrome

November 15, 2018
Activity-dependent neuroprotective protein syndrome (ADNP syndrome) is a rare genetic condition that causes developmental delays, intellectual disability and autism spectrum disorder symptoms in thousands of children worldwide. ...

The puzzle of a mutated gene lurking behind many Parkinson's cases

November 15, 2018
Genetic mutations affecting a single gene play an outsized role in Parkinson's disease. The mutations are generally responsible for the mass die-off of a set of dopamine-secreting, or dopaminergic, nerve cells in the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.