Scientists find promising new approach to preventing progression of breast cancer

February 15, 2013

February 15, 2013 – Doctors currently struggle to determine whether a breast tumor is likely to shift into an aggressive, life-threatening mode—an issue with profound implications for treatment. Now a group from The Scripps Research Institute (TSRI) has identified a mechanism through which mitochondria, the powerhouses of a cell, control tumor aggressiveness. Based on their findings, the team developed a simple treatment that inhibits cancer progression and prolongs life when tested in mice.

The research team, which describes its results February 15, 2013, in an article published online ahead of print by The , hopes to proceed quickly to human clinical trials to test this new approach using drugs already in use for other conditions.

Looking at Clues

The TSRI laboratory of Associate Professor Brunhilde H. Felding studies cancer, especially the mechanisms that control metastasis, the spread of cancer from its primary site to distant organs in the body.

Past research suggested that mutations affecting , which are key to energy production in cells, strongly influence whether a tumor becomes aggressive. But the mechanism was not clear.

"We decided to investigate a specific protein complex, called mitochondrial complex I, that critically determines the energy output of ," said the study's first author, Antonio F. Santidrian, a research associate in Felding's laboratory. To do this, the group teamed up with Akemi and Takao Yagi at TSRI, who are leading experts in complex I research. Using unique reagents from the Yagi group, the Felding team discovered that the balance of key metabolic cofactors processed by complex I—specifically, nicotinamide adenine dinucleotide (NAD+) and NADH, the form it takes after accepting a key electron in the energy production cycle—was disturbed in aggressive .

Exciting Results

To find out if the balance of NAD+ and NADH was critical for tumor cell behavior, the team proceeded to insert a yeast gene into cancer cells that caused a shift toward more NAD+. To the scientists' amazement, this shift caused the to become less aggressive.

"It was a really happy moment for me," said Santidrian. But the more exciting moments, he said, were yet to come.

To confirm and extend the initial findings, the team altered genes tied to NAD+ production. The resulting shift again showed that higher NADH levels meant more aggressive tumors, while increased NAD+ had the opposite effect.

The next logical step was to find a simple way to enhance the critical NAD+ level therapeutically. So the team explored what would happen if mice with were fed water spiked with nicotinamide, a precursor for NAD+ production. The scientists found cancer development was dramatically slowed down, and the mice lived longer

"In animal models at various stages, we see that we can actually prevent progression of the disease," said Felding.

Next Steps

Now the group is working toward human trials to learn whether nicotinamide or other NAD+ precursors will have similarly impressive results in humans. Since NAD+ precursors are already used for other purposes, such as controlling cholesterol levels, achieving approval for human clinical trials should be simpler than is normally the case.

"It is not a totally new treatment that would need to be tested for toxicity and side effects like a new drug," said Felding. "And we already know the precursors can be easily ingested."

If manipulating the NAD+/NADH ratio in humans has the same effect as in mice, the results could be profound. Such treatment could benefit people at risk of developing aggressive breast cancer, offer complimentary treatment to chemo and radiation therapy to avoid disease recurrence, and maybe even provide a preventive treatment for women with a family history of breast cancer.

Explore further: New target identified to stop the spread of breast cancer

Related Stories

New target identified to stop the spread of breast cancer

November 10, 2011
A new potential target to slow breast cancer tumor progression and metastasis has been identified by a team of researchers led by Dr. Richard Kremer from the Research Institute of the McGill University Health Centre (RI-MUHC). ...

Hidden vitamin in milk yields remarkable health benefits

June 14, 2012
A novel form of vitamin B3 found in milk in small quantities produces remarkable health benefits in mice when high doses are administered, according to a new study conducted by researchers at Weill Cornell Medical College ...

Natural compound helps reverse diabetes in mice

October 4, 2011
Researchers at Washington University School of Medicine in St. Louis have restored normal blood sugar metabolism in diabetic mice using a compound the body makes naturally. The finding suggests that it may one day be possible ...

To fight incurable metastatic breast cancer, resistance must be broken

December 10, 2012
One of the most frustrating truths about cancer is that even when a treatment works, it often doesn't work for long because cancer cells find ways to resist. However, researchers reporting studies done in mice in the December ...

Recommended for you

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Clear link between heavy vitamin B intake and lung cancer

August 22, 2017
New research suggests long-term, high-dose supplementation with vitamins B6 and B12—long touted by the vitamin industry for increasing energy and improving metabolism—is associated with a two- to four-fold increased lung ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.