Cell reprogramming during liver regeneration

March 28, 2013
Hepatocytes are reprogrammed into biliary cells upon liver injury. Immunofluorescence analysis of yellow fluorescent protein-expressing mouse hepatocytes at 4 weeks after toxin-induced injury. YFP-expressing hepatocytes are green, biliary cells are red, cell nuclei are blue. In the center of the field is a duct containing multiple hepatocyte-derived biliary cells, which appear yellow since are expressing both green and red immunofluorescence. Credit: 2013 Cold Spring Harbor Laboratory Press

During embryonic development, animals generate many different types of cells, each with a distinct function and identity.

"Although the identities of these cells remain stable under normal conditions, some cells can be persuaded to take on new identities, through reprogramming," says Ben Stanger, MD, PhD, assistant professor of Medicine in the Division of Gastroenterology at the Perelman School of Medicine, University of Pennsylvania.

Researchers have been able to reprogram cells experimentally, but few have shown that cells can change their identities under normal physiological conditions in the body, particularly in mammals.

In the cover article of this month's issue of Genes and Development, Stanger, PhD candidate Kilangsungla Yanger, Yiwei Zong, PhD, and their colleagues, did just that in the liver of a mouse. Stanger is also an investigator in the Abramson Family Cancer Research Institute and the Department of Cell and .

The adult liver contains two major cell types – hepatocytes and biliary cells – that differ dramatically in appearance and function. Hepatocytes are the main cell type in the liver, where they synthesize proteins and other macromolecules, and detoxify toxic substances. Biliary cells, on the other hand, line the bile ducts, which carry bile from the liver to the to help digest fats.

Using a sensitive method to tag and track how cells develop and differentiate, the researchers found that conditional expression of an activated Notch1 gene converted hepatocytes into biliary cells. Notch is an important receptor for relaying signals to tell cells how to develop.

What's more, after the researchers injured with a variety of toxins to stimulate wound healing, they found that over two to three weeks hepatocytes activated a biliary cell program on their own, acquiring the shape and function of biliary cells. These changes were dependent on the activation of endogenous Notch signaling.

"This is direct evidence that cells can be converted from one mature cell type to another in a live animal, as part of a normal response to injury," says Stanger. "We think that augmenting pre-existing cell reprogramming relationships may be another way to engineer for the treatment of diseases in which there are not enough , such as cholestasis."

Explore further: Gallbladder shown as potential stem cell source for regenerative liver and metabolic disease

Related Stories

Gallbladder shown as potential stem cell source for regenerative liver and metabolic disease

April 19, 2012
A new study presented today at the International Liver Congress 2012 indicates the potential for gallbladder tissue (which is routinely discarded from organ donors and surgical interventions) to be a highly available candidate ...

Deadly liver cancer may be triggered by cells changing identity, study shows

July 16, 2012
A rare type of cancer thought to derive from cells in the bile ducts of the liver may actually develop when one type of liver cell morphs into a totally different type, a process scientists used to consider all but impossible. ...

Swine cells could power artificial liver

February 27, 2013
Chronic or acute, liver failure can be deadly. Toxins take over, the skin turns yellow and higher brain function slows.

Mature liver cells may be better than stem cells for liver cell transplantation therapy

June 4, 2012
After carrying out a study comparing the repopulation efficiency of immature hepatic stem/progenitor cells and mature hepatocytes transplanted into liver-injured rats, a research team from Sapporo, Japan concluded that mature ...

Scientists turns liver cells directly into neurons with new technique

October 7, 2011
(Medical Xpress) -- Fully mature liver cells from laboratory mice have been transformed directly into functional neurons by researchers at the Stanford University School of Medicine. The switch was accomplished with the introduction ...

Recommended for you

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.