First objective measure of pain discovered in brain scan patterns

April 10, 2013

For the first time, scientists have been able to predict how much pain people are feeling by looking at images of their brains, according to a new study led by the University of Colorado Boulder.

The findings, published today in the New England Journal of Medicine, may lead to the development of reliable methods doctors can use to objectively quantify a patient's pain. Currently, can only be measured based on a patient's own description, which often includes rating the pain on a scale of one to 10. Objective measures of pain could confirm these pain reports and provide new clues into how the generates different types of pain.

The new research results also may set the stage for the development of methods using brain scans to objectively measure anxiety, depression, anger or other .

"Right now, there's no clinically acceptable way to measure pain and other emotions other than to ask a person how they feel," said Tor Wager, associate professor of psychology and at CU-Boulder and lead author of the paper.

The research team, which included scientists from New York University, Johns Hopkins University and the University of Michigan, used -mining techniques to comb through images of 114 brains that were taken when the subjects were exposed to multiple levels of heat, ranging from benignly warm to painfully hot. With the help of the computer, the scientists identified a distinct neurologic signature for the pain.

"We found a pattern across multiple systems in the brain that is diagnostic of how much pain people feel in response to painful heat," Wager said.

Going into the study, the researchers expected that if a pain signature could be found it would likely be unique to each individual. If that were the case, a person's pain level could only be predicted based on past images of his or her own brain. But instead, they found that the signature was transferable across different people, allowing the scientists to predict how much pain a person was being caused by the applied heat, with between 90 and 100 percent accuracy, even with no prior brain scans of that individual to use as a reference point.

The scientists also were surprised to find that the signature was specific to . Past studies have shown that social pain can look very similar to physical pain in terms of the it produces. For example, one study showed that the brain activity of people who have just been through a relationship breakup—and who were shown an image of the person who rejected them—is similar to the brain activity of someone feeling physical pain.

But when Wager's team tested to see if the newly defined neurologic signature for heat pain would also pop up in the data collected earlier from the heartbroken participants, they found that the signature was absent.

Finally, the scientists tested to see if the neurologic signature could detect when an analgesic was used to dull the pain. The results showed that the signature registered a decrease in pain in subjects given a painkiller.

The results of the study do not yet allow physicians to quantify physical pain, but they lay the foundation for future work that could produce the first objective tests of pain by doctors and hospitals. To that end, Wager and his colleagues are already testing how the neurologic signature holds up when applied to different types of pain.

"I think there are many ways to extend this study, and we're looking to test the patterns that we've developed for predicting pain across different conditions," Wager said. "Is the predictive signature different if you experience pressure pain or mechanical pain, or pain on different parts of the body?

"We're also looking towards using these same techniques to develop measures for chronic pain. The pattern we have found is not a measure of chronic pain, but we think it may be an 'ingredient' of under some circumstances. Understanding the different contributions of different systems to chronic and other forms of suffering is an important step towards understanding and alleviating human suffering."

Explore further: New imaging technique captures brain activity in patients with chronic low back pain

Related Stories

New imaging technique captures brain activity in patients with chronic low back pain

July 27, 2011
Research from Brigham and Women's Hospital (BWH) uses a new imaging technique, arterial spin labeling, to show the areas of the brain that are activated when patients with low back pain have a worsening of their usual, chronic ...

Where does it hurt? Pain map discovered in the human brain

November 29, 2012
(Phys.org)—Scientists have revealed the minutely detailed pain map of the hand that is contained within our brains, shedding light on how the brain makes us feel discomfort and potentially increasing our understanding of ...

Broken hearts really hurt

February 22, 2012
"Broken-hearted" isn't just a metaphor -- social pain and physical pain have a lot in common, according to Naomi Eisenberger of the University of Califiornia-Los Angeles, the author of a new paper published in Current Directions ...

Treatment of chronic low back pain can reverse abnormal brain activity and function

May 17, 2011
It likely comes as no surprise that low back pain is the most common form of chronic pain among adults. Lesser known is the fact that those withchronic pain also experience cognitive impairments and reduced gray matter in ...

Negative emotions influence brain activity during anticipation and experience of pain

September 19, 2011
Neuroticism — the tendency to experience negative emotions — significantly affects brain processing during pain, as well as during the anticipation of pain, according to a new study in Gastroenterology, the official ...

Neuron memory key to taming chronic pain

February 13, 2012
For some, the pain is so great that they can't even bear to have clothes touch their skin. For others, it means that every step is a deliberate and agonizing choice. Whether the pain is caused by arthritic joints, an injury ...

Recommended for you

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.