Researchers discover new way to block inflammation

July 1, 2013, New York University School of Medicine

Researchers at NYU Langone Medical Center have discovered a mechanism that triggers chronic inflammation in Alzheimer's, atherosclerosis and type-2 diabetes. The results, published today in Nature Immunology, suggest a common biochemical thread to multiple diseases and point the way to a new class of therapies that could treat chronic inflammation in these non-infectious diseases without crippling the immune system. Alzheimer's, atherosclerosis and type-2 diabetes—diseases associated with aging and inflammation—affect more than 100 million Americans.

When the body encounters a pathogen, it unleashes a rush of chemicals known as cytokines that draws to the site of infection and causes inflammation. Particulate matter in the body, such as the cholesterol crystals associated with vascular disease and the that form in the brain in Alzheimer's disease, can also cause inflammation but the exact mechanism of action remains unclear. Researchers previously thought that these crystals and plaques accumulate outside of cells, and that —immune cells that scavenge debris in the body—induce inflammation as they attempt to clear them.

"We've discovered that the mechanism causing in these diseases is actually very different," says Kathryn J. Moore, PhD, senior author of the study and associate professor of medicine and cell biology, Leon H. Charney Division of Cardiology at NYU Langone Medical Center.

The researchers found that does not linger on the outside of cells. Instead, a receptor called CD36 present on macrophages draws the soluble forms of these particles inside the cell where they are transformed into substances that trigger an inflammatory response. Says Dr. Moore, "What we found is that CD36 binds soluble cholesterol and protein matter associated with these diseases, pulls them inside the cell, and then transforms them. The resulting insoluble crystals and amyloid damage the macrophage and trigger a powerful cytokine, called interleukin-1B, linked to a chronic ."

These findings hold exciting clinical implications. When the researchers blocked the CD36 receptor in mice with atherosclerosis (in which cholesterol thickens the arteries), the cytokine response declined, fewer cholesterol crystals formed in plaques, and inflammation decreased. Consequently, atherosclerosis also abated.

Other less-targeted strategies to control inflammation may hamper the immune response, but the CD36 strategy spares certain cytokines to fight off pathogens, while blocking CD36's ability to trigger interleukin-1B.

"Our findings identify CD36 as a central regulator of the immune response in these conditions and suggest that blocking CD36 might be a common therapeutic option for all three diseases," says Dr. Moore.

Explore further: Researchers discover new culprit in atherosclerosis

More information: Paper: dx.doi.org/10.1038/ni.2639

Related Stories

Researchers discover new culprit in atherosclerosis

January 9, 2012
A new study by NYU Langone Medical Center researchers identified a new culprit that leads to atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque and narrows arteries. The research, published ...

Damaged blood vessels loaded with amyloid worsen cognitive impairment in Alzheimer's disease

February 4, 2013
A team of researchers at Weill Cornell Medical College has discovered that amyloid peptides are harmful to the blood vessels that supply the brain with blood in Alzheimer's disease—thus accelerating cognitive decline by ...

A vaccine for heart disease? New discovery points up this possibility

August 14, 2012
Most people probably know that heart disease remains the nation's No. 1 killer. But what many may be surprised to learn is that cholesterol has a major accomplice in causing dangerous arterial plaque buildup that can trigger ...

Expelled DNA that traps toxins may backfire in obese

June 18, 2013
(Medical Xpress)—The body's most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight and others at risk for cancer, diabetes and chronic inflammation, suggests ...

Research shows how immune system peacefully co-exists with 'good' bacteria

May 22, 2013
The human gut is loaded with commensal bacteria – "good" microbes that, among other functions, help the body digest food. The gastrointestinal tract contains literally trillions of such cells, and yet the immune system ...

Recommended for you

Protein found in patients with severe asthma can help identify who would benefit from targeted drugs

October 22, 2018
In a novel study, researchers succeeded in identifying patients with a form of severe asthma (type 2 endotype) by measuring periostin concentrations in their airways. These patients with the type 2 (T2) endotype may benefit ...

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Immune health maintained by meticulously ordered DNA

October 15, 2018
Walter and Eliza Hall Institute researchers have revealed how immune health is maintained by the exquisite organisation skills of a protein called Pax5.

New immunotherapy targeting blood-clotting protein

October 15, 2018
Normally, the blood protein fibrin does not enter the brain. But in several neurological disorders, the blood-brain barrier—which keeps large molecules in the blood from entering the brain—becomes abnormally permeable, ...

Enzyme that triggers autoimmune responses from T-cells in patients with MS found

October 11, 2018
A team of researchers from Switzerland, the U.S. and Spain has isolated an enzyme that triggers an autoimmune response from T-cells in patients with MS. In their paper published in the journal Science Translational Medicine, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.