New protein knowledge offers hope for better cancer treatment

September 19, 2013

When the pharmaceutical industry develops new medicines – for example for cancer treatment – it is important to have detailed knowledge of the body's molecular response to the medicine.

"With a better knowledge of the many complex processes which are activated in connection with illness and medication, the better the possibility of developing new drugs. We have now moved closer to targeting and treating certain cancers using the so-called PARP – medical inhibitors used in the latest treatment. Certain types of tumours rely heavily on PARP proteins in order to self-repair, and PARP inhibitors can be used specifically to kill ," says Michael Lund Nielsen, Associate Professor at The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen.

The researchers have developed an advanced method for identifying the proteins which are modified with ADP-ribosylation – a biological modification affecting a cell's ability to repair DNA damage. The research findings have just been published in the scientific journal Molecular Cell.

The forms of cancer causing most deaths among women are lung cancer, , , pancreatic cancer and . PARP inhibitors appear to be an effective treatment for hereditary breast and ovarian cancer, but little is known about the treatment details. Our new analysis method can help shed light on precisely how the PARP inhibitor treatment is working because it can offer us more knowledge about the of PARP proteins. In the long term, it will enable us to design better and more precise PARP inhibitors, says Michael Lund Nielsen, Associate Professor at the Novo Nordisk Foundation Center for Protein Research.

DNA repair crucial for cell health

Every day, our DNA is exposed to damage which our healthy cells are capable of repairing and thus keep healthy. But the ability of certain cancer cells to repair their own DNA damage is impaired compared to standard cells and this is exploited using PARP inhibitors which block the repair systems of cancer cells. In principle, PARP inhibitors both damage healthy and cancer cells, but normal cells have different survival mechanisms in comparison to cancer cells. PARP inhibitors therefore appear to offer new and much improved cancer treatment options.

Treatment with PARP inhibitors

PARP treatment is a new and individualised type of cancer treatment. It is a so-called targeted treatment which exploits a weakness inherent in cancer cells. PARP inhibitors have yet to be marketed, but many companies are testing them in clinical (phase 1-3) trials. So far, the PARP inhibitors are only available for experimental purposes.

"Our analysis method makes it possible to map the movement of PARP inhibitors, opening up possibilities for the optimised treatment of breast and ovarian cancers with fewer side effects. It is also being examined whether PARP inhibitors can be used in combination with chemotherapy and/or in connection with other cancers. In particular, radiation therapy produces many unpleasant side effects, but there are indications that optimised treatment could be achieved by combining radiation therapy with PARP inhibitors, as PARP inhibitors make cancer cells more susceptible to radiation therapy," says Michael Lund Nielsen.

Using radiation and chemical compounds, the researchers started by damaging the DNA in cells. They then isolated proteins modified with the ADP-ribosylation and identified them using mass spectrometry, a technique making it possible to determine a protein's identity and the sites where the ADP-ribosylation chemical changes occur.

ADP-ribosylation

ADP-ribosylation is a biological protein modification controlling several key cellular processes, such as the repair of DNA damage. Every day, our DNA suffers damage between one thousand and one million times and it is therefore crucial that the cells can repair their DNA. Certain cancer cells are incapable of self-repair without ADP-ribosylation and this can be exploited for targeted via PARP inhibitors. By inhibiting the PARP proteins that perform ADP-ribosylation, it is thought that these cancer cells are prevented from self-repair and will therefore perish.

PARP and PARP inhibitors

PARP is a group of DNA repair proteins that play an important role in some cancers as certain types of tumours are highly dependent on PARP in order to repair themselves. These tumours are therefore vulnerable to targeted treatment using PARP-inhibiting compounds. PARP inhibitors block the DNA repair system of cancer cells, but few details are known about the molecular aspects surrounding the PARP inhibitors, including which proteins are affected by them. The researchers' new analysis method makes it possible to map the movement of PARP inhibitors, which enables optimised treatment with fewer side effects.

Protein modifications

Proteins are chain-shaped biological macromolecules built up of amino acids. The cells are predominantly controlled by proteins, and many of the characteristics of the protein functions are controlled by, among others, molecular modifications that can be attached to amino acids. Functions that are controlled by protein modifications include: the localisation of proteins at specific locations in the cell, the marking of proteins for degradation and the turning on/off of the biological activity of the . Studies of the modifications that proteins contain are therefore important for understanding a wide range of cellular processes.

Explore further: Renewed hope in a once-abandoned cancer drug class

Related Stories

Renewed hope in a once-abandoned cancer drug class

June 19, 2013
Could drugs that block the body's system for repairing damage to the genetic material DNA become a boon to health? As unlikely as it may seem, those compounds are sparking optimism as potential treatments for ovarian and ...

Experimental drugs for breast cancer could treat lung cancer too

August 13, 2013
Cancer Research UK -funded scientists have discovered that experimental drugs first developed for breast and ovarian cancer could be used to treat the most common type of lung cancer, reveals research published in Oncogene ...

New mechanism of action for PARP inhibitors discovered

November 9, 2012
New understanding of how drugs called PARP inhibitors, which have already shown promise for the treatment of women with familial breast and ovarian cancers linked to BRCA mutations, exert their anticancer effects has led ...

PARP inhibitors may have clinical utility in HER2-positive breast cancers

September 17, 2012
Poly (ADP-Ribose) polymerase (PARP) inhibitors, shown to have clinical activity when used alone in women with familial breast and ovarian cancers linked to BRCA mutations, may be a novel treatment strategy in women with HER2-positive ...

'Cell' article reveals new resistance mechanism to chemotherapy in breast and ovarian cancer

June 18, 2013
It is estimated that between 5% and 10% of breast and ovarian cancers are familial in origin, which is to say that these tumours are attributable to inherited mutations from the parents in genes such as BRCA1 or BRCA2. In ...

Breakthrough could make 'smart drugs' effective for many cancer patients

June 27, 2011
(Medical Xpress) -- Newcastle and Harvard University reseachers have found that blocking a key component of the DNA repair process could extend the use of a new range of 'smart' cancer drugs called PARP inhibitors.

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.