Research in aging fruit flies may explain roots of metabolic dysfunction in aging humans

October 15, 2013

Have you ever wondered why young children can eat bags of Halloween candy and feel fine the next day – compared to adults who experience all sorts of agony following the same junk food binge? Evolution and a gene called Foxo may be to blame. Working in fruit flies, scientists at the Buck Institute have identified a mechanism that helps the flies adapt to changes in diet when they're young; they've discovered that same mechanism gets misregulated as the flies age, disrupting metabolic homeostasis, or balance.

In a study appearing in Cell Reports, researchers focus on the function of the Foxo gene in the intestines of fruit . Foxo is widely expressed throughout the body (both in flies and in humans), particularly in muscle, the liver and pancreas – and can regulate many aspects of metabolism in response to . Lead author Jason Karpac, PhD, Assistant Research Professor at the Buck, says when young animals experience a change in diet, insulin signaling gets repressed, which turns on Foxo. "In normal young animals, Foxo turns on and off quite easily, allowing for a seamless adjustment to changes in diet," said Karpac. "The process is evolutionarily conserved, it protects young animals and helps guarantee their survival," he said.

But Karpac says as the animals age, Foxo stops responding to insulin signaling (not a good thing for non-youngsters who crave that Halloween candy). "In the flies Foxo gets chronically turned on, which disrupts . The process reflects the development of a general inflammatory condition in the aging gut."

"It has been proposed that our modern high-sugar/high fat diets can lead to misregulation of evolutionarily conserved dietary responses," said Buck Institute faculty Heinrich Jasper, PhD, lead scientist on the study. "That may be the case. Metabolism is a very complex process – lots of things can go wrong which increases stress in the animals." Jasper says age-related loss of metabolic balance is a risk factor for many human pathologies. The goal is to identify age-related changes in metabolic pathways with the hope of being able to intervene. "Our aim is to develop treatments that would preserve well-functioning as part of healthy aging – something that would likely not ever include indulging in candy binges."

Explore further: Cellular 'stress sensor' that also modulates metabolism could offer therapeutic target for diabetes

More information: "Misregulation of an Adaptive Metabolic Response Contributes to the Age-Related Disruption of Lipid Homeostatis in Drosophila," Cell Reports, epub, September 12, 2013. www.cell.com/cell-reports/abst … 2211-1247(13)00428-2

Related Stories

Cellular 'stress sensor' that also modulates metabolism could offer therapeutic target for diabetes

July 31, 2013
An organelle called the endoplasmic reticulum (ER) helps to process newly synthesized proteins destined for delivery to the cell membrane. When the ER becomes overloaded and begins to accumulate poorly folded proteins, an ...

Revising the 'textbook' on liver metabolism offers new targets for diabetes drugs

February 21, 2012
A team led by researchers from the Institute for Diabetes, Obesity and Metabolism (IDOM) at the Perelman School of Medicine, University of Pennsylvania, has overturned a "textbook" view of what the body does after a meal. ...

Evolutionary conservation of fat metabolism pathways

May 12, 2011
By virtue of having survived, all animals-from flies to man-share a common expertise. All can distinguish times of plenty from famine and adjust their metabolism or behavior accordingly. Failure to do so signals either extinction ...

Longevity gene makes Hydra immortal and humans grow older

November 13, 2012
Why do we get older? When do we die and why? Is there a life without ageing? For centuries, science has been fascinated by these questions. Now researchers from Kiel (Germany) have examined why the polyp Hydra is immortal ...

Physical activity needed in order to reap benefits of dietary restriction

July 2, 2012
Fruit flies on dietary restriction (DR) need to be physically active in order to get the lifespan extending benefits that come from their Spartan diet. If the same axiom holds true in humans, those practicing caloric restriction ...

Research in fruit flies provides new insight into Barrett's esophagus

June 27, 2013
Research focused on the regulation of the adult stem cells that line the gastrointestinal tract of Drosophila suggests new models for the study of Barrett's esophagus. Barrett's esophagus, a risk factor for esophageal cancer, ...

Recommended for you

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.