Researchers identify how body clock affects inflammation

November 7, 2013
Th17 cells in the intestine. This paper shows that the development of these cells is regulated by the circadian clock. Frozen intestinal sections were stained with anti-CD4-fluorescein isothiocyanate (FITC) and anti-RORγt-phycoerythrin (PE) to identify Th17 cells. A differential interference contrast image of the same field was overlaid with the fluorescence image to locate Th17 cells, which were then highlighted by pseudocoloring in Photoshop. Credit: Xiaofei Yu, Shipra Vaishnava and Yuhao Wang

UT Southwestern Medical Center researchers report that disrupting the light-dark cycle of mice increased their susceptibility to inflammatory disease, indicating that the production of a key immune cell is controlled by the body's circadian clock.

The study published in the Nov. 8 edition of Science identifies a previously hidden pathway by which the body's controls the numbers of key called interleukin-17-producing CD4+ T (TH17). The work could lead to new ways to rev up the body's immune response to infection or dampen that response in the case of autoimmune diseases in which the body attacks its own tissues, said senior author Dr. Lora Hooper, Professor of Immunology and Microbiology and a Howard Hughes Medical Institute (HHMI) Investigator.

Co-authors include Neuroscience Chair and HHMI Investigator Dr. Joseph Takahashi, whose discovery of the mouse and human clock genes led to a description of a conserved circadian clock mechanism in animals. The lead author is Xiaofei Yu, an Immunology student in the UT Southwestern Graduate School of Biomedical Sciences.

"Virtually all life forms on Earth undergo physiological and behavioral changes on a 24-hour daily, or circadian, cycle in accordance with the changes in natural light. Human beings are no exception. Many of our physiological processes, such as eating and sleeping, vary dramatically between day and night. Such processes are controlled by a group of proteins, collectively termed the 'circadian clock,' which function together in individual cells, capturing light cues from the visual and nervous systems and using these cues to regulate gene expression," explained Dr. Hooper, who holds appointments in the Center for the Genetics of Host Defense and the Cancer Immunobiology Center.

Although the circadian clock is known to regulate metabolism and sleep-wake cycles, little was known about whether the circadian clock also regulates the immune system, the body's defense against infectious viruses and bacteria, she said.

Using a mouse model, the researchers identified a gene called Nfil3, which guides the development of the TH17 cells that patrol mucosal surfaces like the intestinal lining and protect against bacterial and fungal infections.

"However, if their numbers are not controlled properly, TH17 cells can produce too much friendly fire and lead to such as (IBD), which afflicts about 600,000 Americans each year," Dr. Hooper said.

"We found that Nfil3 regulates TH17 development by controlling the cellular supply of a protein in T cells called Rorγt that directs the cells to develop into TH17 cells. In mice, the amount of Rorγt in T cells changes during the day-night cycle and is higher at noon than at midnight. This fluctuation causes more TH17 cells to develop at noon when the mice are sleeping," she said.

Mice are nocturnal, meaning their sleep-wake times are the opposite of those in humans.

UT Southwestern researchers identify how body clock affects inflammation
From left: Dr. Lora Hooper, Xiaofei Yu, and Neuroscience Chair Dr. Joseph Takahashi are studying how the body clock affects inflammation. Credit: UT Southwestern Medical Center

"When we disrupted the normal day-night light cycles of mice, essentially giving them jet lag, we found that too many TH17 cells developed and accumulated in the intestines. As a result, these mice were more prone to develop an IBD-like disease, due to friendly fire from the overabundance of those inflammatory TH17 ," she said, adding that it took more than a single day's disruption to change the TH17 concentrations.

Dr. Hooper stressed that it is too soon to tell if the same thing is happening in people, but the possibility is worth studying.

The researchers point out that modern life often involves chronic circadian disruptions, such as night-shift work or jet lag, that other research studies have linked to human inflammatory disease.

"Our findings suggest that the pathologic consequences of circadian disruption may be due in part to direct interactions between the circadian clock and the pathways that regulate proinflammatory immune cell development," the researchers conclude.

Explore further: Key protein is linked to circadian clocks, helps regulate metabolism

More information: "TH17 Cell Differentiation Is Regulated by the Circadian Clock," by X. Yu et al. Science, 2013.

Related Stories

Key protein is linked to circadian clocks, helps regulate metabolism

June 18, 2013
Inside each of us is our own internal timing device. It drives everything from sleep cycles to metabolism, but the inner-workings of this so-called "circadian clock" are complex, and the molecular processes behind it have ...

Circadian rhythms control body's response to intestinal infections

May 31, 2013
(Medical Xpress)—Circadian rhythms can boost the body's ability to fight intestinal bacterial infections, UC Irvine researchers have found.

Study reveals why the body clock is slow to adjust to time changes

August 29, 2013
New research in mice reveals why the body is so slow to recover from jet-lag and identifies a target for the development of drugs that could help us to adjust faster to changes in time zone.

Researchers discover new way to improve internal clock function

August 21, 2013
Overnight flights across the Atlantic, graveyard shifts, stress-induced insomnia are all prime culprits in keeping us from getting a good night's sleep. Thanks to new research from McGill University and Concordia University, ...

Researchers find hormone vasopressin involved in jet lag

October 4, 2013
(Medical Xpress)—A team of researchers from several research centers in Japan has together found what appears to be a connection between the hormone vasopressin and jet-lag. In their paper published in the journal Science, ...

Recommended for you

New compound discovered in fight against inflammatory disease

September 22, 2017
A 10-year study by University of Manchester scientists for a new chemical compound that is able to block a key component in inflammatory illness has ended in success.

Asthma researchers test substance from coralberry leaves

September 14, 2017
The coralberry could offer new hope for asthmatics. Researchers at the University of Bonn have extracted an active pharmaceutical ingredient from its leaves to combat asthma, a widespread respiratory disease. In mice, it ...

Respiratory experts urge rethink of 'outdated' asthma categorisation

September 12, 2017
A group of respiratory medicine experts have called for an overhaul of how asthma and other airways diseases are categorised and treated.

New 'biologic' drug may help severe asthma

September 7, 2017
(HealthDay)—A "biologic" drug in development to treat severe asthma reduces the rate of serious attacks by about two-thirds compared to a placebo drug, according to preliminary research findings.

Songbird study shows how estrogen may stop infection-induced brain inflammation

August 31, 2017
The chemical best-known as a female reproductive hormone—estrogen—could help fight off neurodegenerative conditions and diseases in the future. Now, new research by American University neuroscience Professor Colin Saldanha ...

New insights into protein's role in inflammatory response

July 28, 2017
A protein called POP2 inhibits a key inflammatory pathway, calming the body's inflammatory response before it can become destructive, Northwestern Medicine scientists have demonstrated in mouse models.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.