Study finds a patchwork of genetic variation in the brain

November 1, 2013, Salk Institute
brain

It was once thought that each cell in a person's body possesses the same DNA code and that the particular way the genome is read imparts cell function and defines the individual. For many cell types in our bodies, however, that is an oversimplification. Studies of neuronal genomes published in the past decade have turned up extra or missing chromosomes, or pieces of DNA that can copy and paste themselves throughout the genomes.

The only way to know for sure that neurons from the same person harbor unique DNA is by profiling the genomes of single instead of bulk cell populations, the latter of which produce an average. Now, using single-cell sequencing, Salk Institute researchers and their collaborators have shown that the genomic structures of differ from each other even more than expected. The findings were published November 1 in Science.

"Contrary to what we once thought, the genetic makeup of neurons in the brain aren't identical, but are made up of a patchwork of DNA," says corresponding author Fred Gage, Salk's Vi and John Adler Chair for Research on Age-Related Neurodegenerative Disease.

In the study, led by Mike McConnell, a former junior fellow in the Crick-Jacobs Center for Theoretical and Computational Biology at the Salk, researchers isolated about 100 neurons from three people posthumously. The scientists took a high-level view of the entire —— looking for large deletions and duplications of DNA called copy number variations or CNVs—— and found that as many as 41 percent of neurons had at least one unique, massive CNV that arose spontaneously, meaning it wasn't passed down from a parent. The CNVs are spread throughout the genome, the team found.

The miniscule amount of DNA in a single cell has to be chemically amplified many times before it can be sequenced. This process is technically challenging, so the team spent a year ruling out potential sources of error in the process.

"A good bit of our study was doing control experiments to show that this is not an artifact," says Gage. "We had to do that because this was such a surprise—— finding out that individual neurons in your brain have different DNA content."

The group found a similar amount of variability in CNVs within individual neurons derived from the of three healthy people. Scientists routinely use such induced (iPSCs) to study living neurons in a culture dish. Because iPSCs are derived from single skin cells, one might expect their genomes to be the same.

"The surprising thing is that they're not," says Gage. "There are quite a few unique deletions and amplifications in the genomes of neurons derived from one iPSC line."

Interestingly, the skin cells themselves are genetically different, though not nearly as much as the neurons. This finding, along with the fact that the neurons had unique CNVs, suggests that the genetic changes occur later in development and are not inherited from parents or passed to offspring.

It makes sense that neurons have more diverse genomes than skin cells do, says McConnell, who is now an assistant professor of biochemistry and at the University of Virginia School of Medicine in Charlottesville. "The thing about neurons is that, unlike skin cells, they don't turn over, and they interact with each other," he says. "They form these big complex circuits, where one cell that has CNVs that make it different can potentially have network-wide influence in a brain."

Spontaneously occurring CNVs have also been linked to risk for brain disorders such as schizophrenia and autism, but those studies usually pool many blood cells. As a result, the CNVs uncovered in those studies affect many if not all cells, which suggests that they arise early in development.

The purpose of CNVs in the healthy is still unclear, but researchers have some ideas. The modifications might help people adapt to new surroundings encountered over a lifetime, or they might help us survive a massive viral infection. The scientists are working out ways to alter genomic variability in iPSC-derived and challenge them in specific ways in the culture dish.

Cells with different genomes probably produce unique RNA and then proteins. However, for now, only one sequencing technology can be applied to a single cell.

"If and when more than one method can be applied to a cell, we will be able to see whether cells with different genomes have different transcriptomes (the collection of all the RNA in a cell) in predictable ways," says McConnell.

In addition, it will be necessary to sequence many more cells, and in particular, more , notes corresponding author Ira Hall, an associate professor of biochemistry and molecular genetics at the University of Virginia. "There's a lot more work to do to really understand to what level we think the things we've found are neuron-specific or associated with different parameters like age or genotype," he says.

Explore further: Alzheimer's, schizophrenia, and autism now can be studied with mature brain cells reprogrammed from skin cells

More information: M.J. McConnell et al., "Mosaic copy number variation in human neurons," Science, 342: 632-637, 2013.

Related Stories

Alzheimer's, schizophrenia, and autism now can be studied with mature brain cells reprogrammed from skin cells

June 6, 2013
Difficult-to-study diseases such as Alzheimer's, schizophrenia, and autism now can be probed more safely and effectively thanks to an innovative new method for obtaining mature brain cells called neurons from reprogrammed ...

Neuron 'claws' in the brain enable flies to distinguish one scent from another

October 20, 2013
Think of the smell of an orange, a lemon, and a grapefruit. Each has strong acidic notes mixed with sweetness. And yet each fresh, bright scent is distinguishable from its relatives. These fruits smell similar because they ...

Study points to possible treatment for brain disorders

October 22, 2013
Clemson University scientists are working to determine how neurons are generated, which is vital to providing treatment for neurological disorders like Tuberous Sclerosis Complex (TSC).

Research uncovers dynamic changes in the epigenome that occur during brain circuitry formation

July 4, 2013
Changes in the epigenome, including chemical modifications of DNA, can act as an extra layer of information in the genome, and are thought to play a role in learning and memory, as well as in age-related cognitive decline. ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (2) Nov 01, 2013
If the neuronal CNVs are nutrient-dependent and pheromone-controlled as some CNVs are in yeasts, the diversity of ecological and social niche construction that precedes neurogenic niche construction could be examined in the context of epigenetic effects of olfactory/pheromonal input in species from microbes to man.

If the CNVs arise due to mutations, there is currently no information about how natural selection would link them to adaptations that benefit species survival. Thus, even those who formerly touted mutation-initiated natural selection are now abandoning any connection from physics to biology and telling us that organismal complexity -- as seen in the neuronal differences -- is something that "just happens."

See, for example: http://www.scient...20130722

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.