Role for sugar uptake in breast cancer revealed

December 18, 2013 by Lynn Yarris
These phase contrast and confocal immunofluorescence images (inset)show 3-D cultures of non-malignant (S1) and malignant (T4-2) human breast cells in which glucose metabolism is inhibited by the addition of 2-deoxy-D-glucose (2DG). Suppressing glucose uptake leads to a phenotypic reversion of malignant cells (they look normal) while not affecting the non-malignant cells. Credit: Mina Bissell and Berkeley Lab

Metabolism was lost in the shadows of cancer research for decades but has recently been reclaiming some of the spotlight. Now, Mina Bissell, Distinguished Scientist with Berkeley Lab's Life Sciences Division and a leading authority on breast cancer, has shown that aerobic glycolysis - glucose metabolism in the presence of oxygen – is not the consequence of the cancerous activity of malignant cells but is itself a cancerous event.

"A dramatic increase in sugar uptake could be a cause of oncogenesis," Bissell says. "Furthermore, through a series of painstaking analysis, we have discovered two new pathways through which increased uptake of glucose could itself activate other oncogenic pathways. This discovery provides possible new targets for diagnosis and therapeutics."

Working with Bissell, Yasuhito Onodera, a Japanese postdoctoral fellow in her research group who is now an assistant professor in Japan, examined the expression of glucose transporter proteins in human breast . The focus was on the glucose transporter known as GLUT3, the concentrations of which Onodera and Bissell showed are 400 times greater in malignant than in non-malignant . The study was carried out using a 3D culture assay developed earlier by Bissell and her group for mouse mammary cells and later with her collaborator, Ole Petersen, for human breast cells. The assay enables actual reproduction of breast cells to form structural units and for to form tumor-like colonies.

"We found that overexpression of GLUT3 in the non-malignant human breast cells activated known oncogenic signaling pathways and led to the loss of tissue polarity and the onset of cancerous growth," Bissell says. "Conversely, the reduction of GLUT3 in the malignant cells led to a phenotypic reversion, in which the oncogenic signaling pathways were suppressed and the cells behaved as if they were non-malignant even though they still contained the malignant genome."

Bissell began exploring the relationship between aerobic glycolysis and malignant cells more than 40 years ago. She was intrigued with a hypothesis proposed in 1924 by biochemist and future Nobel laureate Otto Heinrich Warburg, which held that increased aerobic glycolysis at the expense of respiration and higher ATP production is a cause and not a symptom of . This hypothesis became controversial because many researchers could find aerobic glycolysis in normal cells. Even now the majority view holds that increased sugar uptake in cells is the result of the intense metabolic demands of tumor cells and not a cause of

"In a series of papers published in the early 1970s, using fibroblasts from chick embryos and their malignant counterparts, we showed that if the microenvironmental context was equalized, the rate of aerobic glycolysis was indeed higher in cancer cells under all conditions tested," Bissell says. "Clearly Warburg was correct in saying that cancer cells always had increased aerobic glycolysis; however, he was not necessarily correct in saying that the defect had to be in respiratory pathways. We found these pathways to be similarly active in normal and malignant fibroblasts, as we find also now in our breast cancer cell studies in 3D assays."

Bissell would go on to discover that the cause of increased aerobic glycolysis was a dramatic increase in glucose uptake by , but at that time did not determine whether this increase was the cause of malignant transformation. In this new study with Onodera and Jin-Min Nam of Japan's Hokkaido University, 3D laminin-rich extracellular matrix cultures of non-malignant human breast epithelial cells from a reduction mammoplasty were compared to malignant cells derived from the study's non-malignant cells.

Bissell says this demonstration of an active role in development for glucose uptake could only have been revealed through a 3D culture assay in which both malignant and non-malignant breast cells behave in a manner that is phenotypically analogous to their corresponding architecture in living tissue.

"In our 3D culture assay, glucose uptake and metabolism determined the signaling activity and the morphology of both malignant and non-malignant mammary epithelial cells," Bissell says. "Our ability to revert the malignant phenotype in our 3D cultures shed new light on the importance of and metabolism in inducing oncogenic signaling."

Bissell and her Japanese collaborators believe their findings help explain why hyperglycemia in diseases such as obesity and diabetes can raise the risk of breast and other cancers. In addition, these results may also help explain why anti-diabetic drugs, such as metformin, which lower blood glucose levels, have been linked to lower cancer risks and mortality.

"Our work highlights the importance of the context in studying pathways involved in tissue-specificity and disease, and sheds additional light on the relationship between metabolic diseases and cancer" Onodera explains.

The results of this study have been reported by Onodera, Nam and Bissell, in the Journal of Clinical Investigation (JCI). The paper is titled "Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways." Bissell and Onodera are both corresponding authors.

Explore further: Researchers identify possible new oncogene and future therapy target

Related Stories

Researchers identify possible new oncogene and future therapy target

September 11, 2012
A gene that may possibly belong to an entire new family of oncogenes has been linked by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) to the resistance of breast ...

New class of proteins allows breast cancer cells to evade tyrosine kinase inhibitors

August 13, 2012
Aberrant regulation of cell growth pathways is required for normal cells to become cancerous, and in many types of cancer, cell growth is driven by a group of enzymes known as receptor tyrosine kinases (RTKs). The RTK epidermal ...

Oxygen-free energy designed to fuel brain development spurs on growth of cancer

January 22, 2013
The metabolic process which fuels the growth of many cancers has its origins in normal brain growth finds a new study published in BioMed Central's open access journal Cancer & Metabolism. Using knock-out mice the study shows ...

Researchers find new clue to clinical trial failures of MMP cancer therapies

February 12, 2013
Proposed cancer therapeutic drugs based on blocking the catalytic activities of matrix metalloproteinases (MMPs), which profoundly remodel the environment surrounding a breast cell, have performed poorly in clinical trials. ...

To revert breast cancer cells, give them the squeeze

December 17, 2012
Researchers at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory have put the squeeze—literally—on malignant mammary cells to guide them back into a normal growth pattern.

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.