Immune cells may heal an injured heart

January 16, 2014, Washington University School of Medicine
Immune cells may heal an injured heart
The immune system plays an important role in the heart's response to injury. Now, researchers at Washington University School of Medicine in St. Louis have shown that two major pools of immune cells are at work in the heart. Both belong to a class of cells known as macrophages. One appears to promote healing, while the other likely drives inflammation, which is detrimental to long-term heart function. Studying mice, new research suggests that embryonic macrophages in the heart promote healing after injury. Credit: Slava Epelman, M.D., Ph.D.

The immune system plays an important role in the heart's response to injury. But until recently, confusing data made it difficult to distinguish the immune factors that encourage the heart to heal following a heart attack, for example, from those that lead to further damage.

Now, researchers at Washington University School of Medicine in St. Louis have shown that two major pools of immune cells are at work in the . Both belong to a class of cells known as macrophages. One appears to promote healing, while the other likely drives inflammation, which is detrimental to long-term heart function.

The study, in mice, is published Jan. 16 in the journal Immunity.

"Macrophages have long been thought of as a single type of cell," said first author Slava Epelman, MD, PhD, instructor in medicine. "Our study shows there actually are many different types of macrophages that originate in different places in the body. Some are protective and can help blood vessels grow and regenerate tissue. Others are inflammatory and can contribute to damage."

Macrophages play multiple roles in the body, from digesting dead cells to activating other immune cells against foreign invaders. It was long assumed that all macrophages originate in the and circulate in the bloodstream, populating different tissues and responding to threats as necessary.

"Now we know it's more complicated," Epelman said. "We found that the heart is one of the few organs with a pool of macrophages formed in the embryo and maintained into adulthood. The heart, brain and liver are the only organs that contain large numbers of macrophages that originated in the yolk sac, in very early stages of development, and we think these macrophages tend to be protective."

Studying mice, Epelman and his colleagues showed that healthy hearts maintain this population of embryonic macrophages, as well as a smaller pool of adult macrophages derived from the blood. But during such as high blood pressure, not only were more adult macrophages recruited from the blood and brought to the heart, they actually replaced the embryonic macrophages.

"Now that we can tell the difference between these two types of macrophages, we can try targeting one but not the other," Epelman said. "We want to try blocking the adult macrophages from the blood, which appear to be more inflammatory. And we want to encourage the embryonic macrophages that are already in the heart to proliferate in response to stress because they do things that are beneficial, helping the heart regenerate."

Epelman points out a developmental reason that embryonic macrophages might encourage healing.

"Since they originate in the embryo, it makes sense that these macrophages appear to do things that are good for the developing embryo—helping growth, blood vessel formation, organization and structure, and eating up dead and dying cells," Epelman said.

It follows then that adult macrophages originating in the bone marrow and circulating in the blood might be better equipped to respond to infection, and therefore specialize in triggering an inflammatory response.

The complex interplay between these in the heart may provide an explanation for why some people experience healing following a but others don't. Patients with diabetes, for example, don't heal well following injury to the heart.

"We know there's a link between diabetes and poor recovery of ," Epelman said. "And a link between diabetes and altered function of macrophages. We knew these links existed, we just haven't been able to put it all together. We want to know what happens to in times of cardiac stress, how this changes the balance between the cell types and whether we can influence that balance."

While this research is still in the early stages, the current study is a starting point for finding ways to improve treatment for chronic heart problems.

"Long-established heart failure doesn't recover," Epelman said. "But in the first few months after injury, there's a real potential to impact the heart's recovery."

Explore further: New path of origin for macrophages

More information: Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama W, Unanue ER, Colonna M, Randolph GJ, Mann DL. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. Jan. 16, 2014.

Related Stories

New path of origin for macrophages

May 2, 2012
Macrophages play a key role in the immune response, protecting organisms against infection and regulating the development of inflammation in tissue. Macrophages differ depending on where they are located and which tasks they ...

Anti-tumor activity of immune cells can be restored

December 10, 2013
The Leuven-based VIB researchers have revealed a mechanism that explains why the anti-tumor activity of specific immune cells called macrophages is suppressed during tumor growth. They have also demonstrated that blocking ...

How invariant natural killers keep tuberculosis in check

January 2, 2014
Mycobacterium tuberculosis is a major cause of death worldwide, and a formidable foe. Most healthy people can defend themselves against tuberculosis, but they need all parts of their immune system to work together. A study ...

Finding about classic suppressor of immunity points toward new therapies for bad infections

January 7, 2014
A well-documented suppressor of immunity that's used by fetuses and tumors alike, just may be able to change its spots, researchers report.

Immune cells essential to establishing pregnancy

July 8, 2013
New research from the University of Adelaide shows for the first time that immune cells known as macrophages are critical to fertility by creating a healthy hormone environment in the uterus.

Spontaneous fusion with macrophages empowers cancer cells to spread

December 15, 2013
Cancer cells that spontaneously fuse with macrophages, the immune system's healthy scavenger cells, play a key role in the metastasis, or spread of the cancer to other areas of the body, according to research to be presented ...

Recommended for you

A nanoparticle inhalant for treating heart disease

January 18, 2018
A team of researchers from Italy and Germany has developed a nanoparticle inhalant for treating people suffering from heart disease. In their paper published in the journal Science Translational Medicine, the group describes ...

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.