Molecular 'cocktail' transforms skin cells into beating heart cells

February 20, 2014
These beating heart cells have been reprogrammed from skin cells using a combination of a chemical cocktail and just one genetic factor (Oct. 4). Reducing scientists' reliance on gene-based reprogramming approaches paves the way for pharmaceutical-based approaches that could more easily translate into successful therapies. Credit: Haixia Wang/Gladstone Institutes

The power of regenerative medicine appears to have turned science fiction into scientific reality—by allowing scientists to transform skin cells into cells that closely resemble beating heart cells. However, the methods required are complex, and the transformation is often incomplete. But now, scientists at the Gladstone Institutes have devised a new method that allows for the more efficient—and, importantly, more complete—reprogramming of skin cells into cells that are virtually indistinguishable from heart muscle cells. These findings, based on animal models and described in the latest issue of Cell Reports, offer newfound optimism in the hunt for a way to regenerate muscle lost in a heart attack.

Heart disease is the world's leading cause of death, but recent advances in science and medicine have improved the chances of surviving a . In the United States alone, nearly 1 million people have survived an attack, but are living with failure—a chronic condition in which the heart, having lost muscle during the attack, does not beat at full capacity. So, scientists have begun to look toward cellular reprogramming as a way to regenerate this damaged heart muscle.

The reprogramming of skin into heart cells, an approach pioneered by Gladstone Investigator, Deepak Srivastava, MD, has required the insertion of several genetic factors to spur the reprogramming process. However, scientists have recognized potential problems with scaling this gene-based method into successful therapies. So some experts, including Gladstone Senior Investigator Sheng Ding, PhD, have taken a somewhat different approach.

"Scientists have previously shown that the insertion of between four and seven genetic factors can result in a skin cell being directly reprogrammed into a beating heart cell," explained Dr. Ding, the paper's senior author and a professor of pharmaceutical chemistry at UCSF, with which Gladstone is affiliated. "But in my lab, we set out to see if we could perform a similar transformation by eliminating—or at least reducing—the reliance on this type of genetic manipulation."

To that effect, the research team used skin cells extracted from adult mice to screen for chemical compounds, so-called 'small molecules,' that could replace the . Dr. Ding and his research team have previously harnessed the power of small molecules to reprogram skin cells into neurons and, more recently, insulin-producing pancreas cells. They reasoned that a similar technique could be used to do the same with heart cells.

"After testing various combinations of small molecules, we narrowed down the list to a four-molecule 'cocktail,' which we called SPCF, that could guide the into becoming more like heart cells," said Gladstone Postdoctoral Scholar Haixia Wang, PhD, the paper's lead author. "These newly reprogramed cells exhibited some of the twitching and contracting normally seen in mature heart cells, but the transformation wasn't entirely complete."

So, Drs. Ding and Wang decided to add one genetic factor, called Oct4, to the small molecule cocktail. And by doing so, the research team was able to generate a completely reprogrammed cell.

"Once we added Oct4 to the mix, we observed clusters of contracting cells after a period of just 20 days," explained Dr. Ding. "Remarkably, additional analysis revealed that these cells showed the same patterns of gene activation and electric signaling patterns normally seen in the ventricles of the heart."

Dr. Ding and his team believe that these results may point to a more desirable method for reprogramming, as ventricular heart cells are the type of cells typically lost during a heart attack. These findings give the team newfound optimism that the research is well on its way towards an entirely pharmaceutical-based method to regrow heart muscle.

"The fact that the combination of Oct4 and appears to generate beating in an accelerated fashion is encouraging," said Joseph Wu, MD, PhD, Director of the Stanford Cardiovascular Institute, who was not involved in this study. "Future advances by Dr. Ding and others will likely focus on improving the efficiency of conversion as well as duplicating the data in adult human cells."

Explore further: Scientists transform non-beating human cells into heart-muscle cells

Related Stories

Scientists transform non-beating human cells into heart-muscle cells

August 22, 2013
In the aftermath of a heart attack, cells within the region most affected shut down. They stop beating. And they become entombed in scar tissue. But now, scientists at the Gladstone Institutes have demonstrated that this ...

Help for a scarred heart: Scarring cells turned to beating muscle

February 12, 2014
Poets and physicians know that a scarred heart cannot beat the way it used to, but the science of reprogramming cells offers hope—for the physical heart, at least.

Scientists reprogram skin cells into insulin-producing pancreas cells

February 6, 2014
A cure for type 1 diabetes has long eluded even the top experts. Not because they do not know what must be done—but because the tools did not exist to do it. But now scientists at the Gladstone Institutes, harnessing the ...

In breakthrough study damaged mouse hearts regenerated by transforming scar tissue into beating heart muscle

April 18, 2012
Scientists at the Gladstone Institutes today are announcing a research breakthrough in mice that one day may help doctors restore hearts damaged by heart attacks—by converting scar-forming cardiac cells into beating ...

Recommended for you

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.