Study finds that fast-moving cells in the human immune system walk in a stepwise manner

March 17, 2014
A team of biologists and engineers at UC San Diego applied advanced mathematical tools to answer a basic question in cell biology about how cells move and discovered that the mechanism looks very similar to walking. Starting with an amoeboid Dictyostelium cell, the team found the cell periodically forms and breaks adhesions mainly under two "feet," and generates the traction forces (indicated by the heatmap) that propel them forward by the coordinated action of contractile proteins. The researchers then applied the same technology to study human white blood cells, which are responsible for moving to sites of infection and inflammation to repair tissue, and found the same "walking" mechanism at work. Their discovery, published March 17 in the Journal of Cell Biology, is an important advance toward developing new pharmacological strategies to treat chronic inflammatory diseases, which are caused by the uncontrolled recruitment of white blood cells to the site of inflammation. Credit: Image courtesy of the Journal of Cell Biology and ©2014 Bastounis et al.

A team of biologists and engineers at the University of California, San Diego has discovered that white blood cells, which repair damaged tissue as part of the body's immune response, move to inflamed sites by walking in a stepwise manner. The cells periodically form and break adhesions mainly under two "feet," and generate the traction forces that propel them forward by the coordinated action of contractile proteins. Their discovery, published March 17 in the Journal of Cell Biology, is an important advance toward developing new pharmacological strategies to treat chronic inflammatory diseases such as arthritis, irritable bowel syndrome, Type 1 diabetes, and multiple sclerosis.

"The immune system requires the migration of to the point of infection and to clear invaders and begin the process of digesting and repairing tissue. However, when the body fails to properly regulate the recruitment of these , the inflammation can become chronic resulting in irreversible tissue injury and loss of functionality," said Juan C. Lasheras, a professor in the departments of Mechanical and Aerospace Engineering and Bioengineering, and in the Institute for Engineering in Medicine. "Understanding the way in which these cells generate the necessary forces to move from the blood stream to the site of inflammation will guide the design of new strategies that could target specific mechanical processes to control their migration," Lasheras said.

Figuring out how white blood cells move required an interdisciplinary approach involving engineering and . The lead author of the study is Effie Bastounis, a member of a team led by UC San Diego Jacobs School of Engineering professors Lasheras and Juan Carlos del Alamo, of the Department of Mechanical and Aerospace Engineering, and Richard A. Firtel, a professor of Cell and Developmental Biology in the Division of Biological Sciences. "This work was made possible through interdisciplinary approaches that applied mathematical tools to a basic question in about how cells move," stated Richard Firtel. "By first applying novel methodologies to study the amoeba Dictyostelium, an experimental system often used by cell biologists, we were able to discover the basic mechanisms that control amoeboid movement, which we then applied to understanding white blood cells."

The video will load shortly
A team of biologists and engineers at UC San Diego applied advanced mathematical tools to answer a basic question in cell biology about how cells move and discovered that the mechanism looks very similar to walking. Starting with an amoeboid Dictyostelium cell, the team found the cell periodically forms and breaks adhesions mainly under two Credit: Image courtesy of the Journal of Cell Biology and ©2014 Bastounis et al.

The team used new analytical tools to measure, with a high degree of accuracy and resolution, the forces the cells exert to move forward. The novel methodology, which they have been refining during the last several years supported by grants from the National Institutes of Health (R01-GM084227 and R01-GM037830), is called Fourier Traction Force Microscopy. Before their study, scientists thought white blood cells did not move in a highly coordinated manner. Furthermore, their work discovered that cells move by not only extending themselves at their front and contracting their backs, but also by squeezing inwardly along their lateral sides pushing the front of the cell forward. These findings establish a new paradigm as to how cell move. The research team is currently extending their techniques, which they have used to study leukocytes and other types of amoeboid cells, to investigate the mechanics of cancer cell migration and invasion.

Explore further: New blood cells fight brain inflammation

Related Stories

New blood cells fight brain inflammation

February 16, 2014
Hyperactivity of our immune system can cause a state of chronic inflammation. If chronic, the inflammation will affect our body and result in disease. In the devastating disease multiple sclerosis, hyperactivity of immune ...

Researchers closer to understanding how proteins regulate immune system

July 3, 2012
Researchers in the biological sciences department in the Faculty of Science at the University of Calgary have revealed how white blood cells move to infection or inflammation in the body; findings which could help lead to ...

Immune cells regulate blood stem cells

February 21, 2014
Researchers in Bern, Germany, have discovered that, during a viral infection, immune cells control the blood stem cells in the bone marrow and therefore also the body's own defences. The findings could allow for new forms ...

Scientists discover new way to tackle inflammatory diseases

February 27, 2014
Researchers at the University of Sheffield have found a potential new way to treat common and largely incurable inflammatory conditions like chronic obstructive pulmonary disease (COPD).

Piggy-backing proteins ride white blood cells to wipe out metastasizing cancer

January 6, 2014
Cornell biomedical engineers have discovered a new way to destroy metastasizing cancer cells traveling through the bloodstream – lethal invaders that are linked to almost all cancer deaths – by hitching cancer-killing ...

Recommended for you

Study sheds light on how body may detect early signs of cancer

July 26, 2017
Fresh insights into how cells detect damage to their DNA - a hallmark of cancer - could help explain how the body keeps disease in check.

Accounting for human immune diversity increases clinical relevance of fundamental immunological research

July 26, 2017
Mouse models have advanced our understanding of immune function and disease in many ways but they have failed to account for the natural diversity in human immune responses. As a result, insights gained in the lab may be ...

How genetically engineered viruses develop into effective vaccines

July 26, 2017
Lentiviral vectors are virus particles that can be used as a vaccine to stimulate the immune system to fight against specific pathogens. The vectors are derived from HIV, rendered non-pathogenic, and then engineered to carry ...

Does your child really have a food allergy?

July 24, 2017
(HealthDay)—Many people misunderstand what food allergies are, and even doctors can be confused about how to best diagnose them, suggests a new report from the American Academy of Pediatrics.

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.