Human fat: A trojan horse to fight brain cancer?

May 1, 2014

Johns Hopkins researchers say they have successfully used stem cells derived from human body fat to deliver biological treatments directly to the brains of mice with the most common and aggressive form of brain tumor, significantly extending their lives.

The experiments advance the possibility, the researchers say, that the technique could work in people after surgical removal of brain cancers called glioblastomas to find and destroy any remaining cancer cells in difficult-to-reach areas of the brain. Glioblastoma cells are particularly nimble; they are able to migrate across the entire brain, hide out and establish new tumors. Cure rates for the tumor are notoriously low as a result.

In the mouse experiments, the Johns Hopkins investigators used mesenchymal (MSCs)—which have an unexplained ability to seek out cancer and other damaged cells—that they harvested from human fat tissue. They modified the MSCs to secrete bone morphogenetic protein 4 (BMP4), a small protein involved in regulating embryonic development and known to have some tumor suppression function. The researchers, who had already given a group of mice glioblastoma cells several weeks earlier, injected stem cells armed with BMP4 into their brains.

In a report published in the May 1 issue of Clinical Cancer Research, the investigators say the mice treated this way had less tumor growth and spread, and their cancers were overall less aggressive and had fewer migratory cancer cells compared to mice that didn't get the treatment. Meanwhile, the mice that received stem cells with BMP4 survived significantly longer, living an average of 76 days, as compared to 52 days in the untreated mice.

"These modified are like a Trojan horse, in that they successfully make it to the tumor without being detected and then release their therapeutic contents to attack the cancer cells," says study leader Alfredo Quinones-Hinojosa, M.D., a professor of neurosurgery, oncology and neuroscience at the Johns Hopkins University School of Medicine.

Standard treatments for glioblastoma include chemotherapy, radiation and surgery, but even a combination of all three rarely leads to more than 18 months of survival after diagnosis. Finding a way to get biologic therapy to mop up what other treatments can't get is a long-sought goal, says Quinones-Hinojosa, who cautions that years of additional studies are needed before human trials of fat-derived MSC therapies could begin.

Quinones-Hinojosa, who treats patients at Johns Hopkins Kimmel Cancer Center, says his team was heartened by the fact that the stem cells let loose into the brain in his experiments did not transform themselves into new tumors.

The latest findings build on research published in March 2013 by Quinones-Hinojosa and his team in the journal PLOS ONE, which showed that harvesting MSCs from fat was much less invasive and less expensive than getting them from bone marrow, a more commonly studied method.

Ideally, he says, if MSCs work, a patient with a glioblastoma would have some adipose tissue (fat) removed from any number of locations in the body a short time before surgery. The MSCs in the fat would be drawn out and manipulated in the lab to secrete BMP4. Then, after surgeons removed the brain tumor, they could deposit these treatment-armed cells into the brain in the hopes that they would seek out and destroy the .

Explore further: Researchers use a type of stem cells from human adipose tissue to chase migrating cancer cells

Related Stories

Researchers use a type of stem cells from human adipose tissue to chase migrating cancer cells

March 12, 2013
In laboratory studies, Johns Hopkins researchers say they have found that stem cells from a patient's own fat may have the potential to deliver new treatments directly into the brain after the surgical removal of a glioblastoma, ...

There's life after radiation for brain cells

August 12, 2013
Scientists have long believed that healthy brain cells, once damaged by radiation designed to kill brain tumors, cannot regenerate. But new Johns Hopkins research in mice suggests that neural stem cells, the body's source ...

Research yields new clues to how brain cancer cells migrate and invade

May 1, 2012
Researchers have discovered that a protein that transports sodium, potassium and chloride may hold clues to how glioblastoma, the most common and deadliest type of brain cancer, moves and invades nearby healthy brain tissue. ...

Repeated surgeries appear to extend life of patients with deadliest of brain cancers

November 1, 2012
People who undergo repeated surgeries to remove glioblastomas—the most aggressive and deadliest type of brain tumors—may survive longer than those who have just a one-time operation, new Johns Hopkins research suggests.

Researchers target cancer stem cells in malignant brain tumors

January 6, 2014
Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells – cells from which malignant brain tumors are believed to originate ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.