Human fat: A trojan horse to fight brain cancer?

May 1, 2014, Johns Hopkins University School of Medicine

Johns Hopkins researchers say they have successfully used stem cells derived from human body fat to deliver biological treatments directly to the brains of mice with the most common and aggressive form of brain tumor, significantly extending their lives.

The experiments advance the possibility, the researchers say, that the technique could work in people after surgical removal of brain cancers called glioblastomas to find and destroy any remaining cancer cells in difficult-to-reach areas of the brain. Glioblastoma cells are particularly nimble; they are able to migrate across the entire brain, hide out and establish new tumors. Cure rates for the tumor are notoriously low as a result.

In the mouse experiments, the Johns Hopkins investigators used mesenchymal (MSCs)—which have an unexplained ability to seek out cancer and other damaged cells—that they harvested from human fat tissue. They modified the MSCs to secrete bone morphogenetic protein 4 (BMP4), a small protein involved in regulating embryonic development and known to have some tumor suppression function. The researchers, who had already given a group of mice glioblastoma cells several weeks earlier, injected stem cells armed with BMP4 into their brains.

In a report published in the May 1 issue of Clinical Cancer Research, the investigators say the mice treated this way had less tumor growth and spread, and their cancers were overall less aggressive and had fewer migratory cancer cells compared to mice that didn't get the treatment. Meanwhile, the mice that received stem cells with BMP4 survived significantly longer, living an average of 76 days, as compared to 52 days in the untreated mice.

"These modified are like a Trojan horse, in that they successfully make it to the tumor without being detected and then release their therapeutic contents to attack the cancer cells," says study leader Alfredo Quinones-Hinojosa, M.D., a professor of neurosurgery, oncology and neuroscience at the Johns Hopkins University School of Medicine.

Standard treatments for glioblastoma include chemotherapy, radiation and surgery, but even a combination of all three rarely leads to more than 18 months of survival after diagnosis. Finding a way to get biologic therapy to mop up what other treatments can't get is a long-sought goal, says Quinones-Hinojosa, who cautions that years of additional studies are needed before human trials of fat-derived MSC therapies could begin.

Quinones-Hinojosa, who treats patients at Johns Hopkins Kimmel Cancer Center, says his team was heartened by the fact that the stem cells let loose into the brain in his experiments did not transform themselves into new tumors.

The latest findings build on research published in March 2013 by Quinones-Hinojosa and his team in the journal PLOS ONE, which showed that harvesting MSCs from fat was much less invasive and less expensive than getting them from bone marrow, a more commonly studied method.

Ideally, he says, if MSCs work, a patient with a glioblastoma would have some adipose tissue (fat) removed from any number of locations in the body a short time before surgery. The MSCs in the fat would be drawn out and manipulated in the lab to secrete BMP4. Then, after surgeons removed the brain tumor, they could deposit these treatment-armed cells into the brain in the hopes that they would seek out and destroy the .

Explore further: Researchers use a type of stem cells from human adipose tissue to chase migrating cancer cells

Related Stories

Researchers use a type of stem cells from human adipose tissue to chase migrating cancer cells

March 12, 2013
In laboratory studies, Johns Hopkins researchers say they have found that stem cells from a patient's own fat may have the potential to deliver new treatments directly into the brain after the surgical removal of a glioblastoma, ...

There's life after radiation for brain cells

August 12, 2013
Scientists have long believed that healthy brain cells, once damaged by radiation designed to kill brain tumors, cannot regenerate. But new Johns Hopkins research in mice suggests that neural stem cells, the body's source ...

Research yields new clues to how brain cancer cells migrate and invade

May 1, 2012
Researchers have discovered that a protein that transports sodium, potassium and chloride may hold clues to how glioblastoma, the most common and deadliest type of brain cancer, moves and invades nearby healthy brain tissue. ...

Repeated surgeries appear to extend life of patients with deadliest of brain cancers

November 1, 2012
People who undergo repeated surgeries to remove glioblastomas—the most aggressive and deadliest type of brain tumors—may survive longer than those who have just a one-time operation, new Johns Hopkins research suggests.

Researchers target cancer stem cells in malignant brain tumors

January 6, 2014
Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells – cells from which malignant brain tumors are believed to originate ...

Recommended for you

Researchers discover novel mechanism linking changes in mitochondria to cancer cell death

February 20, 2018
To stop the spread of cancer, cancer cells must die. Unfortunately, many types of cancer cells seem to use innate mechanisms that block cancer cell death, therefore allowing the cancer to metastasize. While seeking to further ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.