Researchers use a type of stem cells from human adipose tissue to chase migrating cancer cells

March 12, 2013

In laboratory studies, Johns Hopkins researchers say they have found that stem cells from a patient's own fat may have the potential to deliver new treatments directly into the brain after the surgical removal of a glioblastoma, the most common and aggressive form of brain tumor.

The investigators say so-called (MSCs) have an unexplained ability to seek out damaged cells, such as those involved in cancer, and may provide clinicians a new tool for accessing difficult-to-reach where can hide and proliferate anew. The researchers say harvesting MSCs from fat is less invasive and less expensive than getting them from bone marrow, a more commonly studied method.

Results of the Johns Hopkins proof-of-principle study are described online in the journal .

"The biggest challenge in is the migration of cancer cells. Even when we remove the tumor, some of the cells have already slipped away and are causing damage somewhere else," says study leader Alfredo Quinones-Hinojosa, M.D., a professor of neurosurgery, oncology and neuroscience at the Johns Hopkins University School of Medicine. "Building off our findings, we may be able to find a way to arm a patient's own healthy cells with the treatment needed to chase down those cancer cells and destroy them. It's truly personalized medicine."

For their test-tube experiments, Quinones-Hinojosa and his colleagues bought human MSCs derived from both fat and bone marrow, and also isolated and grew their own stem cell lines from fat removed from two patients. Comparing the three cell lines, they discovered that all proliferated, migrated, stayed alive and kept their potential as equally well.

This was an important finding, Quinones-Hinojosa says, because it suggests that a patient's own might work as well as any to create cancer-fighting cells. The MSCs, with their ability to home in on cancer cells, might be able to act as a delivery mechanism, bringing drugs, nanoparticles or some other treatment directly to the cells. Quinones-Hinojosa cautions that while further studies are under way, it will be years before human trials of MSC delivery systems can begin.

Ideally, he says, if MSCs work, a patient with a would have some adipose tissue (fat) removed—from any number of locations in the body—a short time before surgery. The MSCs in the fat would be drawn out and manipulated in the lab to carry drugs or other treatments. Then, after surgeons removed the brain tumor, they could deposit these treatment-armed cells into the brain in the hopes that they would seek out and destroy the cancer cells.

Currently, standard treatments for glioblastoma are chemotherapy, radiation and surgery, but even a combination of all three rarely leads to more than 18 months of survival after diagnosis. Glioblastoma tumor cells are particularly nimble, migrating across the entire brain and establishing new tumors. This migratory capability is thought to be a key reason for the low cure rate of this tumor type.

"Essentially these MSCs are like a 'smart' device that can track cancer cells," Quinones-Hinojosa says.

Quinones-Hinojosa says it's unclear why MSCs are attracted to glioblastoma cells, but they appear to have a natural affinity for sites of damage in the body, such as a wound. MSCs, whether derived from or fat, have been studied in animal models to treat trauma, Parkinson's disease, ALS and other diseases.

Explore further: Research yields new clues to how brain cancer cells migrate and invade

Related Stories

Research yields new clues to how brain cancer cells migrate and invade

May 1, 2012
Researchers have discovered that a protein that transports sodium, potassium and chloride may hold clues to how glioblastoma, the most common and deadliest type of brain cancer, moves and invades nearby healthy brain tissue. ...

Repeated surgeries appear to extend life of patients with deadliest of brain cancers

November 1, 2012
People who undergo repeated surgeries to remove glioblastomas—the most aggressive and deadliest type of brain tumors—may survive longer than those who have just a one-time operation, new Johns Hopkins research suggests.

Recommended for you

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.