New cancer immunotherapy aims powerful T cells against tumors

May 13, 2014 by Jeffrey Norris, University of California, San Francisco

(Medical Xpress)—Deadly skin cancers in mice shrank in response to a new treatment that may complement other "immunotherapies" developed recently to boost the body's own defenses against disease threats, according to a new study published by UC San Francisco researchers in the May 2014 edition of the Journal of Experimental Medicine.

Using a mouse version of a human drug that is popular for treating osteoporosis, the UCSF researchers discovered a way to manipulate the thymus, a gland situated at the base of the neck above the heart, to alter its activity so that some of the specialized immune cells that pass through it will go on to battle .

"After treatment, mice that normally would be dead in a week or two rejected tumors and survived," said Mark Anderson, MD, PhD, an immunologist with the UCSF Diabetes Center and the leader of the study.

The thymus plays a key role in educating T cells of the immune system about which molecules encountered within the body belong to microbes and ought to be attacked, and which are a normal part of the body and ought to be tolerated.

Anderson and colleagues have changed this education curriculum to better fight cancer. Normally, the immune system regards tumor tissue as a part of the body, and therefore does not target the molecules found on .

As blood courses through the inner part of the thymus, specialized cull the subset of T cells that targets the body's own tissues, so that these tissues are not attacked by the immune system, a phenomenon called central tolerance. Anderson turned the tables, removing the thymus cells that cull the T cells.

The researchers marked these thymus cells for destruction by targeting a protein molecule they need to develop normally, called RANK-L. Treatment that inhibited RANK-L reduced their numbers by more than 90 percent. As a result of the elimination of the thymus cells, T cells that target tumors survived and escaped central tolerance. Just two weeks of treatment was sufficient to generate enough tumor-specific T cells to destroy deadly melanoma skin cancers in the mice.

One theoretical concern with the anti RANK-L strategy, Anderson said, is autoimmunity, in which the immune system destroys normal tissue, because the process of learning to tolerate "self" molecules is disrupted by treatment.

Although the researchers detected T cells that target molecules found on normal tissue, they did not observe significant autoimmune reactions in treated mice. In addition, within ten weeks of stopping treatment, immune responses were back to normal.

RANK-L plays a role not only in the development of specialized thymus cells, but also in the development of other types of cells in the body, including the osteoclasts that break down bone. The UCSF researchers used a mouse antibody targeted against RANK-L, but a human antibody directed against RANK-L forms the basis of the long-term osteoporosis treatment denosumab, which preserves bone mass by targeting osteoclasts.

Anderson suggested that patients treated with denosumab should be periodically evaluated for signs of autoimmunity or other defects in central tolerance.

Arousing the body's own immune defenses to fight cancer using immunotherapy drugs is a recent success story, with ipilimumab, a drug first developed and tested by UCSF and UC Berkeley researchers, now FDA-approved for the of melanoma.

Ipilimumab turns off the brakes that restrain the immune system, acting on immune cells throughout the body. The new strategy developed by Anderson's lab team also releases the brakes on itching for a fight. But it is a distinctly different and complementary approach.

"This is another strategy for getting the immune system to no longer tolerate tumors, one that relies on different molecular components of the ," Anderson said.

The T cells unleashed by temporarily blocking central tolerance might clamp down on their cancer-cell targets more doggedly than weaker antibodies unleashed by other immunotherapies after central tolerance already has culled T , Anderson said.

Explore further: Autoimmune disease strategy emerges from immune cell discovery

More information: "Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance," Imran S. Khan, et al. J Exp Med 2014 211:761-768. Published April 21, 2014,

Related Stories

Autoimmune disease strategy emerges from immune cell discovery

September 9, 2013
Scientists from UC San Francisco have identified a new way to manipulate the immune system that may keep it from attacking the body's own molecules in autoimmune diseases such as type 1 diabetes, rheumatoid arthritis and ...

Living organ regenerated for first time

April 8, 2014
Medical procedures that can rejuvenate human body parts have moved a step closer with the completion of a new study.

Stem-cell-based strategy boosts immune system in mice

May 16, 2013
Raising hopes for cell-based therapies, UC San Francisco researchers have created the first functioning human thymus tissue from embryonic stem cells in the laboratory. The researchers showed that, in mice, the tissue can ...

Biologists discover solution to problem limiting development of human stem cell therapies

January 2, 2014
Biologists at UC San Diego have discovered an effective strategy that could prevent the human immune system from rejecting the grafts derived from human embryonic stem cells, a major problem now limiting the development of ...

In clinical trial, scientists hope to train immune system to attack cancer

June 10, 2013
(Medical Xpress)—Training our immune systems to fight cancer is an appealing prospect. Why wouldn't we want to launch our own internal army against one of our most-hated foes? But the process is a bit like learning to spot ...

Sensitive balance in the immune system

April 11, 2014
Apoptosis is used by cells that are changed by disease or are simply not needed any longer to eliminate themselves before they become a hazard to the body—on a cellular level, death is part of life. Disruption of this process ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.