Investigating the pleasure centers of the brain: How reward signals are transmitted

May 27, 2014, Canadian Association for Neuroscience

New research presented today by Dr. Jonathan Britt, from McGill University, helps to better understand how reward signals, such as those produced by addictive drugs, travel through the brain and modify brain circuits. Dr. Britt obtained these results using optogenetics, which use light-responsive proteins to study the activation of neural circuits in distinct locations, allowing the researcher to precisely dissect the roles of different neural circuits in the brain. Dr. Britt's studies have helped reveal circuits that are responsible for habitual behavior, which could be suitable targets for pharmacotherapies designed to treat drug addiction. These results were presented at the 2014 Canadian Neuroscience Meeting, the annual meeting of the Canadian Association for Neuroscience - Association Canadienne des Neurosciences (CAN-ACN) which takes place May 25 - 28th 2014.

One of the most immediate effects of drugs on the brain is an increase in the levels of dopamine, particularly in a region of the brain called the . Located near the center of the brain, the nucleus accumbens is connected, by intermingled populations of cells, to many other brain structures having roles in pleasure seeking and . The nucleus accumbens is recognized as an integration centre for signals coming from many different brain regions, but the precise role of the different connections, and the means of their integration, resulting in specific behaviours, was until recently impossible to dissect. The advent of optogenetics has made it possible to study the various inputs that come from different regions of the brain, and their positive or negative effects on reward seeking, and their role in drug response in mice and rats.

Dr. Britt has characterized some of the ways that the nucleus accumbens integrates dopamine dependent reinforcement signals with environmental stimuli, which depend on a second neurochemical called glutamate. Glutamate-dependent signals to the nucleus accumbens come from many other brain regions, such as the hippocampus, the amygdala, the thalamus and the prefrontal cortex. Understanding how these different brain regions are interconnected will deepen our understanding of motivation, desire, pleasure seeking and addiction. This research is also applicable to the understanding of conditions such as Tourette's syndrome and obsessive-compulsive disorder.

"Goal-directed behaviour is regulated by large collection of interconnected . It is important to understanding how these component parts interact with each other in order to devise treatment strategies for psychiatric diseases such as addiction, Tourette's syndrome and obsessive-compulsive disorder," concludes Dr. Britt.

Explore further: Delving deep into the brain

More information: www.can-acn.org/meeting2014

Related Stories

Delving deep into the brain

May 1, 2014
Launched in 2013, the national BRAIN Initiative aims to revolutionize our understanding of cognition by mapping the activity of every neuron in the human brain, revealing how brain circuits interact to create memories, learn ...

Studying behavior using light to control neurons

May 15, 2014
A new paper published by OIST's Neurobiology Research Unit identifies some of the neurons responsible for behavioral decisions in rats.

Researchers profile active genes in neurons based on connections

May 23, 2014
(Medical Xpress)—When it comes to the brain, wiring isn't everything. Although neurobiologists often talk in electrical metaphors, the reality is that the brain is not nearly as simple as a series of wires and circuits. ...

Deep brain stimulation for obsessive-compulsive disorder releases dopamine in the brain

April 30, 2014
Some have characterized dopamine as the elixir of pleasure because so many rewarding stimuli - food, drugs, sex, exercise - trigger its release in the brain. However, more than a decade of research indicates that when drug ...

Promising new drug targets for cocaine addiction found

January 20, 2014
Researchers from the Icahn School of Medicine at Mount Sinai have identified a new molecular mechanism by which cocaine alters the brain's reward circuits and causes addiction. Published online in the journal Proceedings ...

Opioid abuse initiates specific protein interactions in neurons in brain's reward system

February 24, 2014
Identifying the specific pathways that promote opioid addiction, pain relief, and tolerance are crucial for developing more effective and less dangerous analgesics, as well as developing new treatments for addiction. Now, ...

Recommended for you

Schizophrenia a side effect of human development

February 21, 2018
Schizophrenia may have evolved as an "unwanted side effect" of the development of the complex human brain, a new study has found.

How the brain tells our limbs apart

February 21, 2018
Legs and arms perform very different functions. Our legs are responsible primarily for repetitive locomotion, like walking and running. Our arms and hands, by contrast, must be able to execute many highly specialized jobs—picking ...

Cognitive benefits of 'young blood' linked to brain protein in mice

February 21, 2018
Loss of an enzyme that modifies gene activity to promote brain regeneration may be partly responsible for age-related cognitive decline, according to new research in laboratory mice by UC San Francisco scientists, who also ...

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

Brain liquefaction after stroke is toxic to surviving brain: study

February 20, 2018
Scientists have known for years that the brain liquefies after a stroke. If cut off from blood and oxygen for a long enough period, a portion of the brain will die, slowly morphing from a hard, rubbery substance into liquid ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.