Dealing with stress—to cope or to quit? Neurons determine

May 27, 2014, Cold Spring Harbor Laboratory
Researchers at Cold Spring Harbor Laboratory have identified the neurons in the brain that determine if a mouse will learn to cope with stress or become depressed. These neurons, located in a region of the brain known as the medial prefrontal cortex (green, top image), become hyperactive in depressed mice (bottom panel is close-up of above, yellow indicates activation). The team showed that this enhanced activity in fact causes depression. Credit: Bo Li/ Cold Spring Harbor Laboratory

We all deal with stress differently. For many of us, stress is a great motivator, spurring a renewed sense of vigor to solve life's problems. But for others, stress triggers depression. We become overwhelmed, paralyzed by hopelessness and defeat. Up to 20% of us will struggle with depression at some point in life, and researchers are actively working to understand how and why this debilitating mental disease develops.

Today, a team of researchers at Cold Spring Harbor Laboratory (CSHL) led by Associate Professor Bo Li reveals a major insight into the neuronal basis of depression. They have identified the group of in the brain that determines how a mouse responds to stress —whether with resilience or defeat.

For years, scientists have relied on brain imaging to look for neuronal changes during depression. They found that a region of the brain known as the medial prefrontal cortex (mPFC) becomes hyperactive in depressed people. This area of the brain is well known to play a role in the control of emotions and behavior, linking our feelings with our actions. But brain scans aren't able to determine if increased activity in the mPFC causes depression, or if it is simply a byproduct of other neuronal changes.

Dr. Li set out to identify the neuronal changes that underlie depression. In work published today in The Journal of Neuroscience, Li and his team, including Minghui Wang, Ph.D. and Zinaida Perova, Ph.D., used a mouse model for depression, known as "learned helplessness." They combined this with a genetic trick to mark specific neurons that respond to stress. They discovered that neurons in the mPFC become highly excited in mice that are depressed. These same neurons are weakened in mice that aren't deterred by – what scientists call resilient mice.

But the team still couldn't be sure that enhanced signaling in the mPFC actually caused depression. To test this, they engineered mice to mimic the neuronal conditions they found in depressed mice. "We artificially enhanced the activity of these neurons using a powerful method known as chemical genetics," says Li. "The results were remarkable: once-strong and resilient mice became helpless, showing all of the classic signs of depression."

These results help explain how one promising new treatment for depression works and may lead to improvements in the treatment. Doctors have had some success with deep brain stimulation (DBS), which suppresses the activity of neurons in a very specific portion of the . "We hope that our work will make DBS even more targeted and powerful," says Li, "and we are working to develop additional strategies based upon the activity of the mPFC to treat depression."

Next, Li is looking forward to exploring how the neurons in the mPFC become hyperactive in helpless mice. "These active neurons are surrounded by inhibitory neurons," says Li. "Are the inhibitory neurons failing? Or are the active neurons somehow able to bypass their controls? These are some of the many open questions we are pursuing to understand the how develops."

Explore further: Turning off depression in the brain

More information: "Synaptic Modifications in the Medial Prefrontal Cortex in Susceptibility and Resilience to Stress" appears online in The Journal of Neuroscience on May 28, 2014.

Related Stories

Turning off depression in the brain

April 17, 2014
Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's a twist.

Scientists discover a new pathway for fear deep within the brain

February 12, 2014
Fear is primal. In the wild, it serves as a protective mechanism, allowing animals to avoid predators or other perceived threats. For humans, fear is much more complex. A normal amount keeps us safe from danger. But in extreme ...

Researchers identify neurons that regulate parental behavior in both male and female mice

May 15, 2014
Good news for Dads: Harvard researchers say the key to being a better parent is – literally – all in your head. In a study in mice, Higgins Professor of Molecular and Cellular Biology and Howard Hughes Investigator Catherine ...

Learning brakes in the brain

May 13, 2014
A brain capable of learning is important for survival: only those who learn can endure in the natural world. When it learns, the brain stores new information by changing the strength of the junctions that connect its nerve ...

Scientists find a new mechanism underlying depression

January 8, 2014
(Medical Xpress)—The World health Organization calls depression "the leading cause of disability worldwide," causing more years of disability than cancer, HIV/AIDS, and cardiovascular and respiratory diseases combined. ...

Shutting off neurons helps bullied mice overcome symptoms of depression

August 29, 2013
A new drug target to treat depression and other mood disorders may lie in a group of GABA neurons (gamma-aminobutyric acid –the neurotransmitters which inhibit other cells) shown to contribute to symptoms like social withdrawal ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.