Fasting triggers stem cell regeneration of damaged, old immune system

June 5, 2014

In the first evidence of a natural intervention triggering stem cell-based regeneration of an organ or system, a study in the June 5 issue of the Cell Press journal Cell Stem Cell shows that cycles of prolonged fasting not only protect against immune system damage—a major side effect of chemotherapy—but also induce immune system regeneration, shifting stem cells from a dormant state to a state of self-renewal.

In both mice and a Phase 1 human clinical trial, long periods of not eating significantly lowered white blood cell counts. In mice, fasting cycles then "flipped a regenerative switch": changing the signaling pathways for hematopoietic , which are responsible for the generation of blood and immune systems, the research showed.

The study has major implications for healthier aging, in which immune system decline contributes to increased susceptibility to disease as we age. By outlining how prolonged fasting cycles—periods of no food for two to four days at a time over the course of six months—kill older and damaged and generate new ones, the research also has implications for chemotherapy tolerance and for those with a wide range of immune system deficiencies, including autoimmunity disorders.

"We could not predict that prolonged fasting would have such a remarkable effect in promoting stem cell-based regeneration of the hematopoietic system," said corresponding author Valter Longo, the Edna M. Jones Professor of Gerontology and the Biological Sciences at the USC Davis School of Gerontology, and director of the USC Longevity Institute.

"When you starve, the system tries to save energy, and one of the things it can do to save energy is to recycle a lot of the immune that are not needed, especially those that may be damaged," Longo said. "What we started noticing in both our human work and animal work is that the white blood cell count goes down with prolonged fasting. Then when you re-feed, the blood cells come back. So we started thinking, well, where does it come from?"

Prolonged fasting forces the body to use stores of glucose, fat and ketones, but also breaks down a significant portion of white blood cells. Longo likens the effect to lightening a plane of excess cargo.

During each cycle of fasting, this depletion of induces changes that trigger stem cell-based regeneration of new . In particular, prolonged fasting reduced the enzyme PKA, an effect previously discovered by the Longo team to extend longevity in simple organisms and which has been linked in other research to the regulation of stem cell self-renewal and pluripotency—that is, the potential for one cell to develop into many different cell types. Prolonged fasting also lowered levels of IGF-1, a growth-factor hormone that Longo and others have linked to aging, tumor progression and cancer risk.

"PKA is the key gene that needs to shut down in order for these stem cells to switch into regenerative mode. It gives the 'okay' for stem cells to go ahead and begin proliferating and rebuild the entire system," explained Longo, noting the potential of clinical applications that mimic the effects of prolonged fasting to rejuvenate the immune system. "And the good news is that the body got rid of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. Now, if you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system."

Prolonged fasting also protected against toxicity in a pilot clinical trial in which a small group of patients fasted for a 72-hour period prior to chemotherapy, extending Longo's influential past research: "While chemotherapy saves lives, it causes significant collateral damage to the immune system. The results of this study suggest that fasting may mitigate some of the harmful effects of chemotherapy," said co-author Tanya Dorff, assistant professor of clinical medicine at the USC Norris Comprehensive Cancer Center and Hospital. "More clinical studies are needed, and any such dietary intervention should be undertaken only under the guidance of a physician."

"We are investigating the possibility that these effects are applicable to many different systems and organs, not just the ," said Longo, whose lab is in the process of conducting further research on controlled dietary interventions and stem cell regeneration in both animal and clinical studies.

Explore further: Fasting makes brain tumors more vulnerable to radiation therapy

Related Stories

Fasting makes brain tumors more vulnerable to radiation therapy

September 11, 2012
A new study from USC researchers is the first to show that controlled fasting improves the effectiveness of radiation therapy in cancer treatments, extending life expectancy in mice with aggressive brain tumors.

Short fasting cycles work as well as chemotherapy in mice

February 8, 2012
Man may not live by bread alone, but cancer in animals appears less resilient, judging by a study that found chemotherapy drugs work better when combined with cycles of short, severe fasting.

Damage control: Recovering from radiation and chemotherapy

April 30, 2014
Researchers at the University of California, San Diego School of Medicine report that a protein called beta-catenin plays a critical, and previously unappreciated, role in promoting recovery of stricken hematopoietic stem ...

Some immune cells appear to aid cancer cell growth, study finds

September 5, 2013
The immune system is normally known for protecting the body from illness. But a subset of immune cells appear to be doing more harm than good.

Stem cell study finds source of earliest blood cells during development

March 21, 2014
Hematopoietic stem cells are now routinely used to treat patients with cancers and other disorders of the blood and immune systems, but researchers knew little about the progenitor cells that give rise to them during embryonic ...

Coaxing iPS cells to become more specialized prior to transplantation cuts rejection risk

May 30, 2014
For many scientists, the clinical promise of stem cells has been dampened by very real concerns that the immune system will reject the transplanted cells before they could render any long-term benefit. Previous research in ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.