Study finds how protein blocks HIV life cycle in elite controllers

June 11, 2014

Investigators from Massachusetts General Hospital (MGH) and the Ragon Institute of MGH, MIT and Harvard have learned more about one way the immune systems of elite controllers – those rare individuals able to control HIV infection without drug treatment – block a key step in the virus's life cycle. In a paper appearing in Cell Host & Microbe, the research team reports finding the mechanism behind the ability of p21, a protein best known as a tumor suppressor, to inhibit reverse transcription, the process of converting viral RNA into DNA.

"Many of the drugs currently being used to treat HIV infection target this essential viral replication step, but it's been uncertain whether reverse transcription can be naturally inhibited in a clinically significant way," says Mathias Lichterfeld, MD, of the MGH Infectious Disease Division, the paper's corresponding author. "Our studies show that a human enzyme is required for HIV reverse transcription and that the upregulation of p21 – an intrinsic inhibitor of similar enzymes – can block viral reverse transcription."

Fewer than 1 percent of individuals infected with HIV can naturally suppress viral replication without antiviral treatment, an ability that keeps viral levels low – sometimes to a level where they cannot be detected with standard assays – and prevents the HIV-induced breakdown of the immune system. Since 2006 researchers at the Ragon Institute have been leading the International HIV Controllers study to investigate factors underlying this rare ability, a project that has enrolled more than 1,500 controllers worldwide and has identified a number of immune factors that interfere with viral growth within CD4 T cells, the virus's primary targets.

In 2011, Lichterfeld led a team that found the expression of p21 was significantly elevated in CD4 cells of HIV controllers and that experimentally knocking out the protein's expression could increase in controllers' cells. That study showed that p21 expression interfered with both reverse transcription, which produces the viral DNA that will be integrated into the genome of infected CD4 cells, and with the production of new RNA molecules to be used to create new viral particles. The current study was designed to investigate the molecular mechanism by which p21 inhibits reverse transcription.

Since p21 is known to inhibit a family of enzymes called cyclin-dependent kinases (CDKs), the research team examined whether p21 inhibits reverse transcription by blocking a CDK enzyme. In a series of experiments they found that the activity of an enzyme called CDK2 is required to protect reverse transcriptase from breakdown by cellular enzymes, identified the site of CDK2's activity on the reverse transcriptase molecule, and showed that p21 inhibits reverse transcription of viral RNA by blocking the protective activity of CDK2.

"An important point is that p21 inhibits reverse transcription by an indirect mechanism that blocks a required human cellular enzyme but not by direct interaction with the virus itself," explains Lichterfeld, an assistant professor of Medicine at Harvard Medical School. "Pharmaceutical inhibitors of reverse transcription act by binding to the reverse transcriptase molecule, a process that the virus can circumvent by sequence mutations. Moreover, this study gives a great example of how much HIV depends on human proteins to replicate and how this dependence exposes the to specific inhibitory effects of the . We hope that identifying this new viral vulnerability that is naturally exploited in HIV controllers may help us design new strategies that can someday lead to a drug-free remission of HIV infection in many more infected individuals."

Explore further: Protease inhibitor resistance involves multiple stages of the HIV-1 life cycle

Related Stories

Protease inhibitor resistance involves multiple stages of the HIV-1 life cycle

August 27, 2013
HIV-1 protease inhibitors are very effective antiviral drugs. These drugs target HIV-1 proteases, which are required for viral replication. Despite the success of protease inhibitors for suppressing HIV-1, some patients do ...

Study identifies population of stem-like cells where HIV persists in spite of treatment

January 12, 2014
Although antiviral therapy against HIV suppresses viral replication and allows infected individuals to live relatively healthy lives for many years, the virus persists in the body, and replication resumes if treatment is ...

Unusual new HIV drug resistance mechanism revealed

February 18, 2014
For the more than one million people with HIV/AIDS in the United States (and the over 34 million people living with HIV/AIDS around the world), antiretroviral drugs such as efavirenz and other so-called non-nucleoside reverse ...

Researchers find novel approach to reactivate latent HIV

June 5, 2014
A team of scientists at the Gladstone Institutes has identified a new way to make latent HIV reveal itself, which could help overcome one of the biggest obstacles to finding a cure for HIV infection. They discovered that ...

Recommended for you

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

Heart toxin reveals new insights into HIV-1 integration in T cell genome

July 20, 2017
Human immunodeficiency virus (HIV)-1 may have evolved to integrate its genetic material into certain immune-cell-activating genes in humans, according to new research published in PLOS Pathogens.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.