Why the immune system fails to kill HIV

July 18, 2014, Karolinska Institutet
hiv
Scanning electron micrograph of an HIV-infected H9 T cell. Credit: NIAID

Our immune system contains CD8+ T cells which protect us from various diseases such as cancer and viruses. Some of them are specifically tasked with killing cells infected with the HIV virus – and researchers from Karolinska Institutet in Sweden, together with international colleagues, have for the first time identified a key explanation for why these cells are unsuccessful in their task. In simple terms, the immune system's ignition keys have not been turned all the way to the start position, which would enable the CD8+ T cells to kill the cells infected with HIV.

It has long been known that CD8+ T that are meant to target and kill the HIV virus lose important functions; they become exhausted and cannot complete their task. In one study, published in the journal PLOS Pathogens, researchers have successfully shown at the molecular level what it is that weakens these important CD8+ T cells.

There are two that are particularly important to CD8+ T cells. They are called T-bet and Eomes and work as ignition keys for the machinery of the immune system – they ensure that CD8+ T cells are correctly instructed to fight the specific disease. In simple terms, T-bet has the role of an instigator that induces CD8+ T cells to divide and mature. Eomes have a more regulatory role and are primarily active in building a memory against an infection that has completely healed, in order to be ready for a new episode of the infection.

Researchers have studied how T-bet and Eomes are expressed in a total of 64 HIV-infected people, the majority of whom were treated in the infection clinic at the Karolinska University Hospital and the sexual health clinic at the Stockholm South General Hospital. The study shows that the CD8+ T cells specifically targeting HIV-infected cells have a low expression of T-bet, but an increased expression of regulatory Eomes. This leads to CD8+ T cells that are maturing poorly and inhibit their ability to kill HIV-infected cells.

Unfortunately, this pattern of the transcription factors was present even when the participants' HIV was responding well to medication, in that the level of HIV virus sunk so low that it was not measurable in their blood.

"This probably explains why CD8+ T cells continue to function poorly despite long-term treatment with antiviral drugs. We have previously known this to be the case, though we have not known why", says Marcus Buggert, researcher at the Department of Laboratory Medicine at Karolinska Institutet.

The researchers hope to discover how the transcription factors' expression can be affected so that T-bet can be increased in patients with HIV. That would possibly give the a chance of killing HIV-infected cells and thus making it easier to cure HIV infection.

"If we can get past this barrier and discover how to control the regulation of these transcription factors, this would open the door to creating a vaccine or cure for HIV. This could be one way of creating an effective immune response that is able to kill HIV-infected cells", says Annika Karlsson, senior research fellow in virology at the Department of Laboratory Medicine at Karolinska Institutet.

Explore further: Hemophilia and long-term HIV infection—is there a protective link?

More information: "T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection." Marcus Buggert, Johanna Tauriainen, Takuya Yamamoto, Juliet Frederiksen, Martin A. Ivarsson, Jakob Michaëlsson, Ole Lund, Bo Hejdeman, Marianne Jansson, Anders Sönnerborg, Richard A. Koup, Michael R. Betts, Annika C. Karlsson. PLOS Pathogens, online 17 July 2014, dx.plos.org/10.1371/journal.ppat.1004251

Related Stories

Hemophilia and long-term HIV infection—is there a protective link?

December 11, 2013
People with the genetic blood clotting disorder hemophilia who have been infected with HIV for decades have an increased proportion of immune cells in their blood that specifically target HIV. This protective immune response ...

New monkey model for AIDS offers promise for medical research

June 19, 2014
HIV-1, the virus responsible for most cases of AIDS, is a very selective virus. It does not readily infect species other than its usual hosts – humans and chimpanzees. While this would qualify as good news for most mammals, ...

Scientists uncover features of antibody-producing cells in people infected with HIV

June 3, 2014
By analyzing the blood of almost 100 treated and untreated HIV-infected volunteers, a team of scientists has identified previously unknown characteristics of B cells in the context of HIV infection. B cells are the immune ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.