Putting a number on pain

July 31, 2014 by Tom Ulrich, Harvard Medical School
Putting a Number on Pain
Subjective measures are useful in assessing patients’ pain, but objective measures would be better. Credit: kanate/iStock

"How much pain are you in?" It's a harder question than many people think. Tools for assessing patients' pain—be they children or adults—rely on perception: a subjective measure that eludes quantification and can change in response to any number of emotional, psychological or physiological factors.

Being able to objectively quantify pain could open the door to better pain management, especially for patients with chronic or ; better anesthetic dosing during surgical procedures; and better understanding of addiction and how to avoid it.

To do so requires measurable markers: physiologic parameters that reliably and quantitatively change during the experience of pain. According to pain researcher David Borsook, Harvard Medical School professor of anaesthesia at Boston Children's Hospital, discovering such markers requires a better understanding of the larger context and of events that trigger pain, a perspective he refers to as "systems neuroscience."

Along with colleague Lino Becerra, HMS associate professor of anaesthesia at Boston Children's, Borsook runs the P.A.I.N. Group—a first-of-its-kind multidisciplinary collaboration between HMS, Boston Children's, Massachusetts General Hospital and McLean Hospital aimed at evaluating long-term changes in children's brain function that can lead to .

"In many pain-related conditions, the patient is normal and then something changes that alters their experience of pain," Borsook said. "A twisted ankle could lead to complex regional pain syndrome [CRPS], surgery could lead to postsurgical neuropathy, a concussion can cause debilitating ongoing headaches, and so on. The question is, how do we integrate data from different research domains in such a way as to track the triggers?"

It's a daunting task. To do it means imaging or otherwise measuring changes in brain activity and chemistry associated with different kinds of pain in different contexts, such as neuropathy, addiction, CRPS and migraine; measuring response to different stimuli, such as surgery, brain injury or hormonal activity, and different kinds of treatment, such as psychological, physical or occupational therapy, analgesics and anesthetics; and analyzing the many neurologic circuits and networks involved in sensation, emotion, cognition and interoception, perceptions of the body's internal stimuli.

Connecting the (pain) dots

Bit by bit, though, some pictures are starting to emerge. For instance, functional magnetic resonance imaging (fMRI) data are helping Borsook's team understand and quantify how the activity between different parts of the brain changes during pain.

And, in a paper published this year in Pain, the team highlighted changes in CRPS patients in the functional connections between the amygdala—a brain structure involved in pain, reward, fear and anxiety—and other brain regions that regulate fear.

Stopping pain before it starts

As researchers untangle the complex pathways that fuel chronic pain, they are asking how to take the next step: Stopping the pain it before it becomes chronic.

"Protecting a child's or adult's brain from the changes that take place during chronic pain development could stop that development in the first place," Borsook explained.

One context in which the P.A.I.N. team's work could have major impact is surgery. "There are 29 million surgeries conducted in the U.S. every year," Borsook noted. "About 30 percent of them result in chronic pain."

The team is investigating whether measurements of brain activity taken with near-infrared spectroscopy (NIRS), which measures blood flow and oxygen use, could help anesthesiologists titrate anesthetics more effectively.

"fMRI can measure responses, but NIRS is much more amenable to use in the operating room," Borsook said, pointing to a 2013 paper in Annals of Surgery. "It could let us measure stress and anxiety related to the procedure, look at the effect of the anesthetic itself and look for markers indicating the creation of pain triggers."

Similarly, knowledge of how the brain and hormones interact may give insight into migraine, its relationship to puberty, how to measure it and how to stop it.

"The prevalence of migraine shoots up around the time of puberty, especially in girls," Borsook said. "Why? What are the triggers?"

He and his colleagues recently published a review in Neurobiology of Disease discussing the complex interplay of hormone effects, age- and sex-related physiologic changes and brain function; how that interplay can lower the migraine threshold in girls' brains; and how that migraine-prone state feeds on itself to make women more susceptible to future migraines.

"We suggest that there are a number of important routes of research that may help us better understand how hormones affect the migraine brain," they wrote, such as studying brain function/hormonal relationships and the short- and long-term effects of oral contraceptives on migraine.

For their part, the P.A.I.N. team has already documented connectivity changes in the hypothalamus of migraine patients. As they reported in a PLoS ONE paper, these changes may help explain some autonomic symptoms of migraine, for example, nausea, sweating and feeling of heat or cold.

In discussing a systems approach to pain, Borsook highlighted the need to partner closely across disciplines to truly understand the biology underlying the pain experience.

"Pain is part of many, many diseases," he said. "Processes that alter the healthy in children and cause chronic produce changes that may affect individuals for life, and as such we have an urgent need to understand and prevent long-term changes. You have to collaborate with people from many biological and medical perspectives in order to draw a clear picture of what those changes are, and how to reverse or prevent them."

Explore further: Study could lead to better treatment for child brain injuries

More information: "The responsive amygdala: Treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome." Simons LE, et al. Pain. 2014 May 23. pii: S0304-3959(14)00256-5. DOI: 10.1016/j.pain.2014.05.023.

Related Stories

Study could lead to better treatment for child brain injuries

June 26, 2014
(Medical Xpress)—The discovery of a new link between post-traumatic stress disorder (PTSD), pain and children with traumatic brain injuries could lead to better treatment methods, according to a new study.

Understanding and managing chronic pain

July 4, 2014
Acupuncture, exercise and massage and physical therapy are among the ways to deal with chronic pain that don't require narcotic painkillers, says Nancy Elder, MD, professor of family and community medicine at the University ...

Teaching the brain to reduce pain

July 10, 2014
People can be conditioned to feel less pain when they hear a neutral sound, new research from the University of Luxembourg has found. This lends weight to the idea that we can learn to use mind-over-matter to beat pain.  The ...

Brain imaging reveals dynamic changes caused by pain medicines

November 19, 2013
A study in the December issue of Anesthesiology suggests a role for brain imaging in the assessment and potential treatment of chronic pain.

New study taps into genetics of spinal pain

July 16, 2014
Pain researchers at the University of Adelaide have launched a new study to investigate the underlying reasons why some sufferers of spinal injury have persistent pain and others don't.

Women's chronic pain is more complex, more severe

October 24, 2013
(Medical Xpress)—New research from the University of Adelaide has found that chronic pain in women is more complex and harder to treat than chronic pain in men.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.