Children with autism have extra synapses in brain

August 21, 2014, Columbia University Medical Center
In a study of brains from children with autism, researchers found that autistic brains did not undergo normal pruning during childhood and adolescence. The images show representative neurons from autistic (left) and control (right) brains; the spines on the neurons indicate the location of synapses. Credit: Guomei Tang, PhD and Mark S. Sonders, PhD/Columbia University Medical Center

Children and adolescents with autism have a surplus of synapses in the brain, and this excess is due to a slowdown in a normal brain "pruning" process during development, according to a study by neuroscientists at Columbia University Medical Center (CUMC). Because synapses are the points where neurons connect and communicate with each other, the excessive synapses may have profound effects on how the brain functions. The study was published in the August 21 online issue of the journal Neuron.

A drug that restores normal synaptic pruning can improve autistic-like behaviors in mice, the researchers found, even when the drug is given after the behaviors have appeared.

"This is an important finding that could lead to a novel and much-needed therapeutic strategy for autism," said Jeffrey Lieberman, MD, Lawrence C. Kolb Professor and Chair of Psychiatry at CUMC and director of New York State Psychiatric Institute, who was not involved in the study.

Although the drug, rapamycin, has side effects that may preclude its use in people with autism, "the fact that we can see changes in behavior suggests that autism may still be treatable after a child is diagnosed, if we can find a better drug," said the study's senior investigator, David Sulzer, PhD, professor of neurobiology in the Departments of Psychiatry, Neurology, and Pharmacology at CUMC.

During normal development, a burst of synapse formation occurs in infancy, particularly in the cortex, a region involved in autistic behaviors; pruning eliminates about half of these cortical synapses by late adolescence. Synapses are known to be affected by many genes linked to autism, and some researchers have hypothesized that people with autism may have more synapses.

To test this hypothesis, co-author Guomei Tang, PhD, assistant professor of neurology at CUMC, examined brains from children with autism who had died from other causes. Thirteen brains came from children ages two to 9, and thirteen brains came from children ages 13 to 20. Twenty-two brains from children without autism were also examined for comparison.

Dr. Tang measured synapse density in a small section of tissue in each brain by counting the number of tiny spines that branch from these cortical neurons; each spine connects with another neuron via a synapse.

By late childhood, she found, spine density had dropped by about half in the control brains, but by only 16 percent in the brains from autism patients.

"It's the first time that anyone has looked for, and seen, a lack of pruning during development of children with autism," Dr. Sulzer said, "although lower numbers of synapses in some brain areas have been detected in brains from older patients and in mice with autistic-like behaviors."

Clues to what caused the pruning defect were also found in the patients' brains; the autistic children's brain cells were filled with old and damaged parts and were very deficient in a degradation pathway known as "autophagy." Cells use autophagy (a term from the Greek for self-eating) to degrade their own components.

Using mouse models of autism, the researchers traced the pruning defect to a protein called mTOR. When mTOR is overactive, they found, brain cells lose much of their "self-eating" ability. And without this ability, the brains of the mice were pruned poorly and contained excess synapses. "While people usually think of learning as requiring formation of new synapses, "Dr. Sulzer says, "the removal of inappropriate may be just as important."

The researchers could restore normal autophagy and synaptic pruning—and reverse autistic-like behaviors in the mice—by administering rapamycin, a drug that inhibits mTOR. The drug was effective even when administered to the mice after they developed the behaviors, suggesting that such an approach may be used to treat patients even after the disorder has been diagnosed.

Because large amounts of overactive mTOR were also found in almost all of the brains of the autism patients, the same processes may occur in children with autism.

"What's remarkable about the findings," said Dr. Sulzer, "is that hundreds of genes have been linked to autism, but almost all of our human subjects had overactive mTOR and decreased autophagy, and all appear to have a lack of normal synaptic pruning. This says that many, perhaps the majority, of genes may converge onto this mTOR/autophagy pathway, the same way that many tributaries all lead into the Mississippi River. Overactive mTOR and reduced autophagy, by blocking normal synaptic pruning that may underlie learning appropriate behavior, may be a unifying feature of autism."

Alan Packer, PhD, senior scientist at the Simons Foundation, which funded the research, said the study is an important step forward in understanding what's happening in the brains of people with autism.

"The current view is that autism is heterogeneous, with potentially hundreds of genes that can contribute. That's a very wide spectrum, so the goal now is to understand how those hundreds of genes cluster together into a smaller number of pathways; that will give us better clues to potential treatments," he said.

"The mTOR pathway certainly looks like one of these pathways. It is possible that screening for mTOR and autophagic activity will provide a means to diagnose some features of , and normalizing these pathways might help to treat synaptic dysfunction and treat the disease."

The paper is titled, "Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits."

Explore further: Preventing autism after epilepsy

Related Stories

Preventing autism after epilepsy

May 7, 2012
(Medical Xpress) -- Early-life seizures are known to be associated with autism, and studies indicate that about 40 percent of patients with autism also have epilepsy. A study from Boston Children’s Hospital finds a reason ...

Autistic brain less flexible at taking on tasks, study shows

July 29, 2014
The brains of children with autism are relatively inflexible at switching from rest to task performance, according to a new brain-imaging study from the Stanford University School of Medicine.

New mouse model may open autism treatment research avenues

July 30, 2014
The hallmark of an excellent researcher is an open mind. That flexibility and openness is what led Nina Schor, M.D., Ph.D., the William H. Eilinger Chair of Pediatrics at the University of Rochester, to follow a hunch about ...

Researchers provide definitive proof for receptor's role in synapse development

December 31, 2012
Jackson Laboratory researchers led by Associate Professor Zhong-wei Zhang, Ph.D., have provided direct evidence that a specific neurotransmitter receptor is vital to the process of pruning synapses in the brains of newborn ...

Researchers uncover steps in synapse building, pruning

November 16, 2011
Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Low doses of antianxiety drugs rebalance the autistic brain

March 19, 2014
New research in mice suggests that autism is characterized by reduced activity of inhibitory neurons and increased activity of excitatory neurons in the brain, but balance can be restored with low doses of a well-known class ...

Recommended for you

Noninvasive spinal stimulation method enables paralyzed people to regain use of hands, study finds

April 26, 2018
The ability to perform simple daily tasks can make a big difference in people's lives, especially for those with spinal cord injuries. A UCLA-led team of scientists reports that six people with severe spinal cord injuries—three ...

Biomarkers and efficacy of vaccine responses among patients treated with new MS drug

April 26, 2018
In March 2017, the U.S. Food and Drug Administration approved ocrelizumab as the first treatment for both relapsing (RMS) and progressive forms of multiple sclerosis (MS), a genetic disease that afflicts approximately 400,000 ...

New link between sleep arousals and body temperature may also be connected to SIDS

April 25, 2018
Brief arousals during sleep—sometimes as many as ten to fifteen per night—appear random in time and occur in humans and even in animals.

Ethics debate overdue in human brain research: experts

April 25, 2018
What if human brain tissue implanted into a pig transferred some of the donor's self-awareness and memories?

Imaging may allow safe tPA treatment of patients with unwitnessed strokes

April 25, 2018
A study led by Massachusetts General Hospital (MGH) investigators may lead to a significant expansion in the number of stroke patients who can safely be treated with intravenous tPA (tissue plasminogen activator), the "clot ...

Brain structure linked to symptoms of restless legs syndrome

April 25, 2018
People with restless legs syndrome may have changes in a portion of the brain that processes sensory information, according to a study published in the April 25, 2018, online issue of Neurology, the medical journal of the ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
3 / 5 (1) Aug 21, 2014
An exceptional insight!, my warm congratulations to all the researchers involved!
juyishi_yun
not rated yet Oct 09, 2014
What about trehalose, something safe, sweet and with no side effects. there is already studies showing that trehalose increases autophagy and hence inprovement in autistic behavior.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.