Gut microbes browse along a gene buffet

August 7, 2014

In the moist, dark microbial rainforest of the intestine, hundreds of species of microorganisms interact with each other and with the cells of the host animal to get the resources they need to survive and thrive.

Though there's a lot of competition in this vibrant ecosystem, collaboration is valued too. A new study on the crosstalk between microbes and cells lining the of mice shows just how cooperative this environment can be.

One of the main ways that hosts manage their interactions with microbes is by carefully controlling the that their cells use. Duke University researchers, with colleagues from UNC-Chapel Hill and Stanford, found that the in the intestine are poised to respond to microbes, and the microbes signal to the host to determine which genes respond. The study appears August 7 in the journal Genome Research.

"The intestine has a tough assignment – it has to allow for digestion and absorption of dietary nutrients while also carefully harboring and managing the teeming microbial community within," said John Rawls, an associate professor of molecular genetics and microbiology in the Duke School of Medicine.

"These physiologic responsibilities and microbial interactions vary at different places along the gut." Molecules produced on demand by the host's genes have lots of different jobs that might help or hurt the bugs: immune responses, digestive enzymes, physiological "climate control" and metabolism, among others. In some cases, the microbes might even be calling in immune system attacks on their competitors, Rawls said. "Good fences make good neighbors."

Scientists have known for some time that different genes of the host are active (or expressed) at different stretches along the length of the gut, which is about 25 feet in humans. But how those genes interact with the microbial community hasn't been clear.

Every cell contains the complete set of DNA in the human genome, but most of it is tightly spooled away in storage and unavailable for expression. Depending on the tissue type and what jobs that tissue is doing, distinct portions of DNA are unspooled to become available for activity through a structure called open chromatin, said Gregory Crawford, an associate professor of pediatrics and expert on gene expression. These open chromatin regions are known to be key locations in the genome that control which genes are expressed and which aren't.

The researchers went into this study expecting to find that the microbes signaled the host to open up areas of chromatin to activate gene expression in the gut. But what they found is that the host chooses which chromatin regions are opened to make genes available for use in each region of the intestine.

Three different mouse populations were used for the study: mice that were raised germ-free, mice that started germ-free for 8-10 weeks but then got an intensive two-week colonization with microbes, and conventionally-raised mice exposed to whatever microbes were available in their environment.

Rather than finding three different patterns of open chromatin however, the experiments found that all three were pretty much the same. Their microbial exposures varied and patterns varied, but the parts of the genome that were open at each location in the gut remained consistent, Crawford said.

"In other words, access to the genes is determined by the host, but usage of particular genes is regulated by the microbes," Crawford said.

The current study just looked at cells of the epithelium, the layer of cells lining the gut, but there would be other cells responding to these microbial signals as well. "It's likely that these microbial signals reach other cells throughout the body, which in turn mount their own specific responses," Rawls said.

Rawls said many genes that are activated by microbes in the mouse gut are similarly responsive in the fish gut. "These are presumably very ancient modes of communication between the and their animal hosts," Rawls said. "Microbes shape our health profoundly, but we're only starting to understand how they do it."

Having established some understanding of the open chromatin landscape in healthy mice, the researchers now hope to figure out how these relationships change with disease states.

Explore further: Genetic makeup and diet interact with the microbiome to impact health

More information: "Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape," J. Gray Camp, Christopher Frank, Colin Lickwar, Harendra Guturu, Tomas Rube, Aaron Wenger, Jenny Chen, Gill Bejerano, Gregory Crawford, John Rawls. Genome Research, Sept. 2014. DOI: 10.1101/gr.165845.113

Related Stories

Genetic makeup and diet interact with the microbiome to impact health

September 25, 2013
A Mayo Clinic researcher, along with his collaborators, has shown that an individual's genomic makeup and diet interact to determine which microbes exist and how they act in the host intestine. The study was modeled in germ-free ...

BGI presents a high-quality gene catalog of human gut microbiome

July 7, 2014
Researchers from BGI, working within the Metagenomics of the Human Intestinal Tract (MetaHIT) project, and in collaboration with other institutions around the world , have established the highest quality integrated gene set ...

Breastfeeding is associated with a healthy infant gut

April 30, 2012
Early colonization of the gut by microbes in infants is critical for development of their intestinal tract and in immune development. A new study, published in BioMed Central's open access journal Genome Biology, shows that ...

Diet affects men's and women's gut microbes differently

July 29, 2014
The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

A new genetic fingerprint lives in your belly

December 5, 2012
Our bodies contain far more microbial genes than human genes. And a new study suggests that just as human DNA varies from person to person, so too does the massive collection of microbial DNA in the intestine.

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.