Researchers find potential new predictor of stress-related illnesses

August 4, 2014, University of Texas Health Science Center at San Antonio
Researchers find potential new predictor of stress-related illnesses
This image of the brain shows the amygdala, a region of that helps shape behavioral and biological responses to threat the stress. The amygdala is a region in the temporal lobe of the brain that helps shape behavioral and biological responses to threat and stress. Credit: Douglas Williamson, Ph.D.

Scientists studying depression in teens have discovered that subtle changes in a gene can predict how the brain reacts to stress, which can cause such health issues as depression, post-traumatic stress disorder and obesity.

The research, published Aug. 2 in the journal Nature, focuses on two longitudinal studies led by Douglas E. Williamson, Ph.D., from The University of Texas Health Science Center at San Antonio, and Ahmad Hariri, Ph.D., from Duke University. Scientists from Columbia University and the University of Pittsburgh are also involved in the research.

Scientists have believed that the tendency to develop stress-related disorders is an inherited trait or is the result of exposure to traumatic events. In this paper, the researchers are also looking into another factor ― that genes may change over time, making some individuals with the same genetic makeup more susceptible to stress than others.

In these studies the researchers looked at the , a gene that regulates the amount of serotonin signaling that occurs between brain cells and is frequently the target for antidepressant drugs. They proved the existence of a mechanism impacting the brain that also may play a role in an individual's reaction to stress, which may be a stronger predictor of stress than DNA sequencing. They used:

  • Functional magnetic resonance imaging (fMRI),
  • Saliva tests,
  • Blood tests, and
  • Examination of brain tissue from deceased individuals to prove their point.

Examining DNA methylation

Attached to the serotonin transporter's DNA are chemical marks called methyl groups that help regulate when, where and how much of the gene is expressed. DNA methylation (the chemical marks) are one form of gene modification, which scientists are studying to understand how the same genetic code can produce a wide range of cellular responses in the body, as well as differences in individuals' reaction to stress.

"Varying the DNA sequence in this gene has been shown to predict activation in the and is linked with depression, so we were interested in determining if DNA methylation may be playing a role in regulating how the brain responds to stress, ultimately making an individual vulnerable to stress-related disorders like depression," Dr. Williamson said. The amygdala is a region in the temporal lobe of the brain that helps shape behavioral and biological responses to threat and stress.

Brain imaging and saliva testing

Initially, the team performed imaging of the brains of 80 participants in a study of Duke undergraduates led by Dr. Hariri. Students were shown angry or fearful faces and researchers recorded their responses in the amygdala. Working with Karestan Koenen, Ph.D., at Columbia University, the team also measured the amount of methylation on serotonin transporter DNA from the participants' saliva.

To the researchers' surprise, even small changes in methylation corresponded with amygdala activity and appeared to be a better predictor of the risk of depression than DNA sequence variation, Dr. Williamson explained.

Replicating the findings with brain imaging and blood tests

To extend and replicate the initial findings, the team examined brain images and DNA in 96 adolescents ages 12 to 15 participating in the Teen Alcohol Outcomes Study (TAOS), a different long-term study led by Dr. Williamson. Researchers again measured amygdala reactivity to angry or fearful faces as well as methylation of the this time in participants' blood. The analyses revealed an even stronger link between methylation and amygdala reactivity.

Verifying the change in brain tissue

To determine if their findings were occurring directly in the amygdala, the group then collaborated with Etienne Sibille, Ph.D., at the University Pittsburgh, to analyze DNA methylation patterns and gene expression in the brains of people who had passed away. To the group's surprise, they received the exact same results. "The methylation sites on the fMRI images corresponded perfectly with lower levels of the serotonin transporter expression in the amygdala. Methylation was suppressing the expression of the gene," he said.

Exposure to stress over time may change the gene and increase risk for depression

"The fact that methylation patterns were the same in saliva, blood and the suggests that these patterns, at least in the case of the serotonin transporter, may be passed down through generations. However, it is also possible that exposure to stress over time impacts changes in methylation systematically throughout the body," Dr. Williamson said.

"The findings of the current study and our ongoing research are contributing to a paradigm shift in how our field examines genetic contributions to psychiatric conditions like depression and posttraumatic stress disorder. We are moving beyond simple inherited genetic sequence variation to examine what is being modified during one's lifetime and how this may in turn be passed on to our children," he noted.

Lowering the risk of depression and PTSD in the future

"Our work is helping to identify the specific mechanisms that are involved in the onset of depression, which is involved in 70 percent of people with PTSD," Dr. Williamson said. "Ultimately, we hope that our findings will lower the risk of developing depression and other stress-related disorders in the future."

Explore further: Small DNA modifications predict brain's threat response

Related Stories

Small DNA modifications predict brain's threat response

August 3, 2014
The tiny addition of a chemical mark atop a gene that is well known for its involvement in clinical depression and posttraumatic stress disorder can affect the way a person's brain responds to threats, according to a new ...

A new brain-based marker of stress susceptibility

July 29, 2014
Some people can handle stressful situations better than others, and it's not all in their genes: Even identical twins show differences in how they respond.

Stress tied to change in children's gene expression related to emotion regulation, physical health

July 24, 2014
Children who have been abused or neglected early in life are at risk for developing both emotional and physical health problems. In a new study, scientists have found that maltreatment affects the way genes are activated, ...

Depression is detectable in the blood

April 30, 2014
Researchers at the MedUni Vienna have demonstrated the possibility of using a blood test to detect depression. While blood tests for mental illnesses have until recently been regarded as impossible, a recent study clearly ...

A blood test for suicide?

July 30, 2014
Johns Hopkins researchers say they have discovered a chemical alteration in a single human gene linked to stress reactions that, if confirmed in larger studies, could give doctors a simple blood test to reliably predict a ...

Aging and gene expression—possible links to autism and schizophrenia in offspring

December 9, 2013
Advanced paternal age has been associated with greater risk for psychiatric disorders, such as schizophrenia and autism. With an increase in paternal age, there is a greater frequency of certain types of mutations that contribute ...

Recommended for you

Study shows how bias can influence people estimating the ages of other people

October 17, 2018
A trio of researchers from the University of New South Wales and Western Sydney University has discovered some of the factors involved when people make errors in estimating the ages of other people. In their paper published ...

Infants are more likely to learn when with a peer

October 16, 2018
Infants are more likely to learn from on-screen instruction when paired with another infant as opposed to viewing the lesson alone, according to a new study.

Researchers use brain cells in a dish to study genetic origins of schizophrenia

October 16, 2018
A study in Biological Psychiatry has established a new analytical method for investigating the complex genetic origins of mental illnesses using brain cells that are grown in a dish from human embryonic stem cells. Researchers ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

Linguistic red flags from Facebook posts can predict future depression diagnoses

October 15, 2018
In any given year, depression affects more than 6 percent of the adult population in the United States—some 16 million people—but fewer than half receive the treatment they need. What if an algorithm could scan social ...

Early changes to synapse gene regulation may cause Alzheimer's disease

October 15, 2018
Alzheimer's disease (AD) is the most common form of dementia, involving memory loss and a reduction in cognitive abilities. Patients with AD develop multiple abnormal protein structures in their brains that are thought to ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.