New insight into how the immune system sounds the alarm

New insight into how the immune system sounds the alarm
The protein kinase ZAP-70 (green) clusters at the plasma membrane upon T cell activation. Credit: Salk Institute

T cells are the guardians of our bodies: they constantly search for harmful invaders and diseased cells, ready to swarm and kill off any threats. A better understanding of these watchful sentries could allow scientists to boost the immune response against evasive dangers (e.g., cancer or infections), or to silence it when it mistakenly attacks the body itself (e.g., autoimmune disorders or allergies).

Now, scientists at the Salk Institute have discovered that T cell triggering relies on a dynamic protein network at the cell surface, as reported in August 3, 2015, in Nature Immunology.

"This is a completely new principle for how T cell activity is controlled—whether it ignores or responds to a threat," says senior author Björn Lillemeier, an assistant professor in the Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis and the Waitt Advanced Biophotonics Center at the Salk Institute.

T become active when a signal—often from a virus or bacterium—triggers molecular sensors on their surface, namely T cell receptors. Previously, scientists believed that additional molecules that bind T cell receptors and help it to perceive this signal were like grapes hanging from a vine, occasionally dropping away or joining to begin the process. In contrast, the new discovery shows that T cell receptors are incredibly active—more like a bustling train station, with molecules rapidly coming and going at different intervals of time, says Lillemeier, who is also the Helen McLoraine Developmental Chair.

A protein called ZAP-70 is well known as a crucial player for kicking the T cell into action. Until now, scientists assumed that a silent form of ZAP-70 floats around inside the T cell until a threat is detected, which recruits ZAP-70 to the cell surface and activates it. By analyzing mutant forms of ZAP-70, Lillemeier's group discovered that instead of ZAP-70 binding the T cell receptor firmly, it comes in contact with the receptor sporadically. Each time this happens, ZAP-70 has to adopt an unfavorable shape that forces it back inside the cell. This cycle continues until a second molecule, called Lck, helps it to remain with the T . The prolonged stay at the activates ZAP-70 and prompts the T cell to attack invaders and .

Scientists at the Salk Institute have discovered that T cell triggering relies on a dynamic protein network at the cell surface, as reported in August 3, 2015, in Nature Immunology. Credit: Salk Institute

This study shows that the steps underlying T cell activation are much more dynamic compared with the less mobile modes that scientists had suspected before. The new study highlights how ZAP-70 and other molecules communicate in space and time, which is crucial for controlling the ultimate activity of a T cell. By understanding this process, Lillemeier says, "We might be able to encourage the immune system to be a little more sensitive in order to recognize and eliminate diseases."

Lillemeier's team is working to identify new principles that determine if T cells respond to a threat versus staying quiet. In addition, they are testing whether their findings could be applied across additional processes in T cells and other immune cells. Because proteins have many of the same modular building blocks, in principle, any protein with structural characteristics comparable to those of ZAP-70 could be controlled by similar mechanisms, Lillemeier says.


Explore further

Crystal clear images uncover secrets of hormone receptors

Journal information: Nature Immunology

Provided by Salk Institute

Nature Immunology. DOI: 10.1038/ni.3231

Citation: New insight into how the immune system sounds the alarm (2015, August 3) retrieved 16 October 2019 from https://medicalxpress.com/news/2015-08-insight-immune-alarm.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
132 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more