Researchers create a promising new treatment for the deadliest form of brain cancer

September 2, 2015 by Reggie Kumar
Glioblastoma (histology slide). Credit: Wikipedia/CC BY-SA 3.0

UCLA scientists have developed a potentially promising new combination therapy for glioblastoma, the most common and deadliest form of brain cancer.

Glioblastoma, also known as grade IV glioma, is an aggressive in humans. Approximately 23,000 people in the U.S. are diagnosed with glioblastoma every year. Patients usually receive surgery, chemotherapy and radiation, but these treatments are not very effective as an estimated 50 percent of GBM patients die within one year, and 90 percent die within three years.

A study led by Dr. Robert Prins and Dr. Linda Liau, both members of the UCLA Jonsson Comprehensive Cancer Center, looked at the impact of a combined treatment using a chemotherapy drug called decitabine and genetically modified immune cells. It is a continuation of previous research, published in 2011, that focused on the effect of decitabine on glioblastoma human cell cultures.

In the new research, Prins and Liau used a technique called engineered adoptive T cell transfer, which involves extracting and growing immune cells outside of the body, then reprogramming them with the gene for a T cell receptor targeting New York esophageal squamous carcinoma, or NY-ESO-1. They are then injected back into mice with glioblastoma tumors to produce an immune response that targets the .

Glioblastoma cells do not naturally produce NY-ESO-1, so the researchers administered decitabine prior to injecting the reprogrammed T cells in order to cause the to express the NY-ESO-1 target.

"The lymphocytes will seek out and find the in the brain," said Prins, UCLA associate professor in the departments of neurosurgery and molecular and medical pharmacology. "They can cross different fiber tracts in the brain to reach tumor cells that have migrated away from the main tumor mass. These factors are important in the treatment of invasive tumors, such as glioblastoma. While surgery to remove the main tumor mass can be done, it is not possible to then locate the tumor cells that get away and this ultimately leads to a nearly universal tumor regrowth."

This new method was about 50 percent effective at curing glioblastoma in the study.

"Brain cancer cells are very good at evading the host immune system, because they do not express specific targets that can be recognized by ," said Liau, UCLA professor and vice chair of neurosurgery.

"By treating cells with decitabine, we found that we can unmask targets on the tumor cell that can be recognized by killer T cells. Once these targets are uncovered, we can then administer T cells that are genetically programmed to attack tumor cells with the new targets."

The next stage of Prins' and Liau's research will verify these findings in other brain tumor models.

This research will be published today in the journal Neuro-Oncology.

Explore further: Researchers identify protein pathway involved in brain tumor stem cell growth

Related Stories

Researchers identify protein pathway involved in brain tumor stem cell growth

February 26, 2015
Glioblastomas are a highly aggressive type of brain tumor, with few effective treatment options. Moffitt Cancer Center researchers are one step closer to understanding glioblastoma development following the identification ...

Killer cocktail fights brain cancer

November 25, 2013
A novel immune-boosting drug combination eradicates brain cancer in mice, according to a study in The Journal of Experimental Medicine.

Epigenetic driver of glioblastoma provides new therapeutic target

July 6, 2015
Cancer's ability to grow unchecked is often attributed to cancer stem cells, a small fraction of cancer cells that have the capacity to grow and multiply indefinitely. How cancer stem cells retain this property while the ...

Research finds no correlation between regulatory T cells and survival in glioblastoma

April 16, 2015
Using a novel methodology of epigenetic quantitative analysis, Dartmouth-Hitchcock's Norris Cotton Cancer Center's interdisciplinary team of investigators led by Camilo Fadul, MD, found no correlation between regulatory T ...

In lab tests, new therapy slows spread of deadly brain tumor cells

July 27, 2015
The rapid spread of a common and deadly brain tumor has been slowed down significantly in a mouse model by cutting off the way some cancer cells communicate, according to a team of researchers that includes UF Health faculty.

Team discovers mechanism responsible for tumor invasion in brain cancer

April 9, 2015
A neuro-oncology research team at Dartmouth's Norris Cotton Cancer Center, led by the Director Mark A. Israel, MD with first author Gilbert J. Rahme, PhD, recently identified the transcription factor Id4 as a suppressor of ...

Recommended for you

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

A metabolic treatment for pancreatic cancer?

August 15, 2017
Pancreatic cancer is now the third leading cause of cancer mortality. Its incidence is increasing in parallel with the population increase in obesity, and its five-year survival rate still hovers at just 8 to 9 percent. Research ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

the masked scientist
not rated yet Sep 03, 2015
One should watch " Burzynski the movie" which discusses this cancer. While his work has been vilified a recent study in PLOS One concludes "....We conclude that in this study antineoplastons have demonstrated a promising level of efficacy against postoperative recurrence with a median CSS time of 67 months in the AN arm versus 39 months in the control arm, achieved via inhibition of early growth in metastatic tumors from colorectal cancer. The administration of antineoplaston AS2–1 may be clinically effective as a postoperative adjuvant therapy in liver metastasis from colorectal cance" citation Ogata Y, Matono K, Tsuda H, Ushijima M, Uchida S, Akagi Y, et al. (2015) Randomized Phase II Study of 5-Fluorouracil Hepatic Arterial Infusion with or without Antineoplastons as an Adjuvant Therapy after Hepatectomy for Liver Metastases from Colorectal Cancer. PLoS ONE 10(3): e0120064. doi:10.1371/journal.pone.0120064

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.