Researchers create a promising new treatment for the deadliest form of brain cancer

September 2, 2015 by Reggie Kumar, University of California, Los Angeles
Glioblastoma (histology slide). Credit: Wikipedia/CC BY-SA 3.0

UCLA scientists have developed a potentially promising new combination therapy for glioblastoma, the most common and deadliest form of brain cancer.

Glioblastoma, also known as grade IV glioma, is an aggressive in humans. Approximately 23,000 people in the U.S. are diagnosed with glioblastoma every year. Patients usually receive surgery, chemotherapy and radiation, but these treatments are not very effective as an estimated 50 percent of GBM patients die within one year, and 90 percent die within three years.

A study led by Dr. Robert Prins and Dr. Linda Liau, both members of the UCLA Jonsson Comprehensive Cancer Center, looked at the impact of a combined treatment using a chemotherapy drug called decitabine and genetically modified immune cells. It is a continuation of previous research, published in 2011, that focused on the effect of decitabine on glioblastoma human cell cultures.

In the new research, Prins and Liau used a technique called engineered adoptive T cell transfer, which involves extracting and growing immune cells outside of the body, then reprogramming them with the gene for a T cell receptor targeting New York esophageal squamous carcinoma, or NY-ESO-1. They are then injected back into mice with glioblastoma tumors to produce an immune response that targets the .

Glioblastoma cells do not naturally produce NY-ESO-1, so the researchers administered decitabine prior to injecting the reprogrammed T cells in order to cause the to express the NY-ESO-1 target.

"The lymphocytes will seek out and find the in the brain," said Prins, UCLA associate professor in the departments of neurosurgery and molecular and medical pharmacology. "They can cross different fiber tracts in the brain to reach tumor cells that have migrated away from the main tumor mass. These factors are important in the treatment of invasive tumors, such as glioblastoma. While surgery to remove the main tumor mass can be done, it is not possible to then locate the tumor cells that get away and this ultimately leads to a nearly universal tumor regrowth."

This new method was about 50 percent effective at curing glioblastoma in the study.

"Brain cancer cells are very good at evading the host immune system, because they do not express specific targets that can be recognized by ," said Liau, UCLA professor and vice chair of neurosurgery.

"By treating cells with decitabine, we found that we can unmask targets on the tumor cell that can be recognized by killer T cells. Once these targets are uncovered, we can then administer T cells that are genetically programmed to attack tumor cells with the new targets."

The next stage of Prins' and Liau's research will verify these findings in other brain tumor models.

This research will be published today in the journal Neuro-Oncology.

Explore further: Researchers identify protein pathway involved in brain tumor stem cell growth

Related Stories

Researchers identify protein pathway involved in brain tumor stem cell growth

February 26, 2015
Glioblastomas are a highly aggressive type of brain tumor, with few effective treatment options. Moffitt Cancer Center researchers are one step closer to understanding glioblastoma development following the identification ...

Killer cocktail fights brain cancer

November 25, 2013
A novel immune-boosting drug combination eradicates brain cancer in mice, according to a study in The Journal of Experimental Medicine.

Epigenetic driver of glioblastoma provides new therapeutic target

July 6, 2015
Cancer's ability to grow unchecked is often attributed to cancer stem cells, a small fraction of cancer cells that have the capacity to grow and multiply indefinitely. How cancer stem cells retain this property while the ...

Research finds no correlation between regulatory T cells and survival in glioblastoma

April 16, 2015
Using a novel methodology of epigenetic quantitative analysis, Dartmouth-Hitchcock's Norris Cotton Cancer Center's interdisciplinary team of investigators led by Camilo Fadul, MD, found no correlation between regulatory T ...

In lab tests, new therapy slows spread of deadly brain tumor cells

July 27, 2015
The rapid spread of a common and deadly brain tumor has been slowed down significantly in a mouse model by cutting off the way some cancer cells communicate, according to a team of researchers that includes UF Health faculty.

Team discovers mechanism responsible for tumor invasion in brain cancer

April 9, 2015
A neuro-oncology research team at Dartmouth's Norris Cotton Cancer Center, led by the Director Mark A. Israel, MD with first author Gilbert J. Rahme, PhD, recently identified the transcription factor Id4 as a suppressor of ...

Recommended for you

In zebrafish, a way to find new cancer therapies, targeting tumor modulators

September 21, 2018
The lab of Leonard Zon, MD, at Boston Children's Hospital has long been interested in making blood stem cells in quantity for therapeutic purposes. Looking for a way to test for their presence in zebrafish, their go-to research ...

What can salad dressing tell us about cancer? Think oil and vinegar

September 20, 2018
Researchers led by St. Jude Children's Research Hospital scientists have identified another way the process that causes oil to form droplets in water may contribute to solid tumors, such as prostate and breast cancer. The ...

Novel biomarker found in ovarian cancer patients can predict response to therapy

September 20, 2018
Despite months of aggressive treatment involving surgery and chemotherapy, about 85 percent of women with high-grade wide-spread ovarian cancer will have a recurrence of their disease. This leads to further treatment, but ...

Testing fluorescent tracers used to help surgeons determine edges of breast cancer tumors

September 20, 2018
A team of researchers with members from institutions in The Netherlands and China has conducted a test of fluorescent tracers meant to aid surgeons performing tumor removal in breast cancer patients. In their paper published ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

New way to target advanced breast cancers

September 20, 2018
A cytokine signature found in certain kinds of breast cancer cells can not only serve as a diagnostic tool for HER2-negative cancers but also offer an effective treatment target.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

the masked scientist
not rated yet Sep 03, 2015
One should watch " Burzynski the movie" which discusses this cancer. While his work has been vilified a recent study in PLOS One concludes "....We conclude that in this study antineoplastons have demonstrated a promising level of efficacy against postoperative recurrence with a median CSS time of 67 months in the AN arm versus 39 months in the control arm, achieved via inhibition of early growth in metastatic tumors from colorectal cancer. The administration of antineoplaston AS2–1 may be clinically effective as a postoperative adjuvant therapy in liver metastasis from colorectal cance" citation Ogata Y, Matono K, Tsuda H, Ushijima M, Uchida S, Akagi Y, et al. (2015) Randomized Phase II Study of 5-Fluorouracil Hepatic Arterial Infusion with or without Antineoplastons as an Adjuvant Therapy after Hepatectomy for Liver Metastases from Colorectal Cancer. PLoS ONE 10(3): e0120064. doi:10.1371/journal.pone.0120064

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.