Using genes to understand the brain's building blocks

January 4, 2016, Allen Institute for Brain Science
Credit: Human Brain Project

Understanding the cellular building blocks of the brain, including the number and diversity of cell types, is a fundamental step toward understanding brain function. Researchers at the Allen Institute for Brain Science have created a detailed taxonomy of cells in the mouse visual cortex based on single-cell gene expression, identifying 49 distinct cell types in the largest collection of individual adult cortical neurons characterized by gene expression published to date. The work appears this month online in Nature Neuroscience.

"Studying any system requires knowing what the system is made of," says Bosiljka Tasic, Ph.D., Assistant Investigator at the Allen Institute for Brain Science. "There are many ways to define the 's cellular building blocks. Our approach was to look at all the genes that are expressed in in the mouse visual cortex and use that information to classify the cells."

The team developed a technique to isolate single cells from the adult mouse brain, and then obtained genome-wide from these individual cells. Each cell expresses thousands of genes, making the cell classification problem an enormous computational task.

"Initially, the problem of classifying cells is like sorting Skittles in the dark," says Vilas Menon, Scientist II at the Allen Institute for Brain Science. "With single-cell gene expression data, we get the equivalent of color, or type, information, but we still have to extract it from the large-scale data set. Ultimately, we wanted to figure out how many types there were in an unbiased, data-driven way."

Tasic, Menon and their team used computational dimension reduction techniques, which collapse genes with similar expression patterns into gene sets. When single cells were analyzed by clustering in this lower-dimensional space, 49 distinct groups appeared based on unique combinations of genes they express, including 42 neuronal and 7 non-neuronal types.

"Our human cortex is what gives rise to our unique thoughts and perceptions," says Christof Koch, Ph.D., President and Chief Scientific Officer at the Allen Institute for Brain Science. "Having this kind of objective analysis of cell types in this region of the brain is a basic piece of understanding we need, and provides a baseline for looking at other regions of the mouse brain and also at the human brain."

The data from this single cell analysis approach agree with and complement the Allen Brain Atlas: a brain-wide gene expression atlas of the .

"Our unit of analysis was a single cell and all genes within each cell, but in our process, we lost fine spatial information," says Tasic. "But then, we were able to use our Allen Brain Atlas, which has brain-wide analysis of each gene, one gene at a time at cellular resolution, to more precisely locate each cell type. Our work is one more step toward assigning genes to specific cell types and then helping investigate what these genes do, how they work together, and how they ultimately make our nervous systems and us who we are."

"Categorizing the cells in visual cortex into these distinct types that are marked by specific will enable us to begin to understand what these cells and types do in the brain," says Hongkui Zeng, Ph.D., Investigator of Cell and Circuit Genetics at the Allen Institute for Brain Science. "Next, we can investigate how correlates with the anatomical, physiological and functional properties of the , how these cell types are connected with each other, and how they work together to process and make sense of the visual information the brain receives from the outside world. This will ultimately shed light on the inner workings of the brain."

Explore further: Researchers decode patterns that make our brains human

More information: Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nature Neuroscience, DOI: 10.1038/nn.4216

Related Stories

Researchers decode patterns that make our brains human

November 16, 2015
The human brain may be the most complex piece of organized matter in the known universe, but Allen Institute researchers have begun to unravel the genetic code underlying its function. Research published this month in Nature ...

Allen Cell types database launched

May 14, 2015
The Allen Institute for Brain Science announced today that it is taking the first major scientific step to create a searchable standards database for the brain with the launch of the Allen Cell Types Database. This first ...

For neurons in the brain, identity can be used to predict location

March 24, 2014
Throughout the world, there are many different types of people, and their identity can tell a lot about where they live. The type of job they work, the kind of car they drive, and the foods they eat can all be used to predict ...

A new, multidisciplinary approach to classify cell types in the brain

December 21, 2015
Despite its importance, scientists still do not understand all of the different cell types that make up the brain. A group of researchers from Baylor College of Medicine (Drs. Andreas and Kimberley Tolias' laboratories), ...

Fine-scale analysis of the human brain yields insight into its distinctive composition

April 12, 2012
Scientists at the Allen Institute for Brain Science have identified similarities and differences among regions of the human brain, among the brains of human individuals, and between humans and mice by analyzing the expression ...

Scientists discover the function and connections of three cell types in the brain

December 16, 2015
How the brain functions is still a black box: scientists aren't even sure how many kinds of nerve cells exist in the brain. To know how the brain works, they need to know not only what types of nerve cells exist, but also ...

Recommended for you

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).

Flow of spinal fluid disrupted in inherited developmental disorder

March 22, 2018
Scientists have pinpointed the mechanism behind hydrocephalus, an accumulation of cerebrospinal fluid around the brain, in an inherited developmental disorder called Noonan syndrome.

Stiffness of connection influences exchange of physical cues during coordinated movements

March 22, 2018
When two people coordinate their movements, such as by holding hands or moving furniture, they exchange physical cues through the objects that connect them. New research published in PLOS Computational Biology suggests that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.