Potential therapeutic targets identified for multiple sclerosis

January 25, 2016
Demyelination by MS. The CD68 colored tissue shows several macrophages in the area of the lesion. Original scale 1:100. Credit: Marvin 101/Wikipedia

Treatment of multiple sclerosis (MS) and other inflammatory diseases may benefit by new findings from a study that identified potential therapeutic targets for a devastating disease striking some 2.3 million people worldwide.

Inflammation is an important part of body's response against infections and tissue damage, but unresolved inflammation contributes to the pathogenesis of a variety of diseases and promotes cancer development.

The study, led by researchers at The University of Texas MD Anderson Cancer Center, described a protein regulator known as Trabid as an important piece of the puzzle that leads to autoimmune inflammation of the central nervous systems in MS patients.

Study results were published in the Jan. 25 online issue of Nature Immunology.

"Our findings highlight an epigenetic mechanism for the regulation of the cytokine genes, IL-12 and IL-23, and established Trabid as an immunological regulator of inflammatory T-cell responses," said Shao-Cong Sun, Ph.D., professor of Immunology. "Trabid appeared to regulate histone modifications by controlling the fate of a histone demethylase called Jmjd2d."

Cytokines are small proteins important for cell signaling, and IL-12 and IL-23 are mediators of inflammation and associated with . Sun believes that Trabid and Jmjd2d may be for the treatment of inflammatory diseases such as MS.

"Since chronic inflammation is a major risk of cancer, future studies will examine whether Trabid and Jmjd2d also have a role in cancer development," said Sun.

Pro-inflammatory cytokines like IL-12 and IL-23 connect innate responses and immune responses and are also involved in autoimmune and inflammatory diseases, said the researchers. The innate immune system, also known as the nonspecific immune system, is an important subsystem of the overall immune system that comprises the cells and mechanisms that defend the host from infection by other organisms.

"Cells of the innate immune system including dendritic cells and macrophages, have an important role in regulating the nature and magnitude of adaptive immune responses," said Sun. "They recognize microbial components including various receptors that trigger intracellular signaling events that impact the function of those cells. Deregulated production of pro-inflammatory cytokines by cells of the innate also contributes to autoimmune and inflammatory diseases."

Sun's team found that deletion of a protein-coding gene known as Zranb1, which encodes Trabid, in inhibited expression of IL-12 and IL-23, impairing differentiation of inflammatory T-cells. The process protected study mice from autoimmune .

Explore further: Will blocking IL-17A help treat kidney disease?

More information: Epigenetic regulation of Il12 and Il23 gene expression and autoimmune inflammation by the deubiquitinase Trabid, DOI: 10.1038/ni.3347

Related Stories

Will blocking IL-17A help treat kidney disease?

January 22, 2016
Many different diseases and insults can injure kidneys, resulting in kidney failure. Some autoimmune diseases damage glomeruli (the 'filtering units' of the kidney), while problems with the tubules (for example, impaired ...

Protein identified that serves as a 'brake' on inflammation

April 21, 2015
Researchers have identified a protein that offers a new focus for developing targeted therapies to tame the severe inflammation associated with multiple sclerosis (MS), colitis and other autoimmune disorders. St. Jude Children's ...

Studying 'inflamm-aging': Monocytes, cytokines, and susceptibility to pneumonia

January 14, 2016
The chronic state of low-level inflammation seen in many elderly individuals (sometimes called "inflamm-aging"), is associated with diseases such as cardiovascular disease and dementia, as well as susceptibility to infections, ...

Slowing down the immune system when in overdrive

February 10, 2014
Many people suffer from chronic inflammation because their immune systems overreact to 'self' tissue. Sydney scientists believe that a small molecule known as Interleukin 21 is a promising therapeutic target in such cases.

Interleukin-27: Can a cytokine with both pro and anti-inflammatory activity make a good drug target?

October 20, 2014
Interleukin-27 (IL-27), a member of the interleukin family of cytokines that help regulate the immune system, has a mainly anti-inflammatory role in the body, and its dysfunction has been implicated in autoimmune diseases ...

Signaling pathway helps protect healthy tissue from overly active immune responses

February 5, 2015
Researchers have uncovered a pathway that's key for protecting healthy tissue from overly active immune responses. The findings, which are described in an upcoming issue of the Journal of the American Society of Nephrology ...

Recommended for you

Immune system can be modulated by targeted manipulation of cell metabolism

August 21, 2017
In its attempt to fight a serious bacterial infection, caused by listeria, for example, the immune system can become so over-activated that the resulting inflammatory response and its consequences can quickly lead to death. ...

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.