Findings in humans provide encouraging foundation for upcoming AIDS vaccine clinical trial

March 24, 2016
An immunogen named eOD-GT8 was designed to bind and activate the predicted human germline precursor B cells of the VRC01 class of HIV broadly neutralizing antibodies (bnAbs). As a test, eOD-GT8 was used as a probe to isolate human naive B cells from HIV-uninfected individuals. This process pulled out VRC01-class human precursor B cells, confirming the design and suggesting that eOD-GT8 immunogens should be further tested in a human vaccine setting to determine if eOD-GT8 can activate the targeted VRC01-class B cells as a first step toward the ultimate elicitation of VRC01-class bnAbs that could protect people against HIV. Credit: J.G. Jardine et al. / Science (2016

Some people infected with HIV naturally produce antibodies that effectively neutralize many strains of the rapidly mutating virus, and scientists are working to develop a vaccine capable of inducing such "broadly neutralizing" antibodies that can prevent HIV infection.

An emerging strategy involves immunizing people with a series of different engineered HIV proteins as immunogens to teach the immune system to produce broadly against HIV. This strategy depends on the ability of the first immunogen to bind and activate special cells, known as broadly neutralizing antibody precursor B cells, which have the potential to develop into broadly neutralizing antibody-producing B cells.

A research team has now found that the right precursor ("germline") cells for one kind of HIV broadly neutralizing antibody are present in most people, and has described the design of an HIV vaccine germline-targeting immunogen capable of binding those B cells. The findings by scientists from The Scripps Research Institute (TSRI), the International AIDS Vaccine Initiative (IAVI) and the La Jolla Institute for Allergy and Immunology were published in Science on March 25.

"We found that almost everybody has these broadly neutralizing antibody precursors, and that a precisely engineered protein can bind to these cells that have potential to develop into HIV broadly neutralizing antibody-producing cells, even in the presence of competition from other ," said the study's lead author, William Schief, TSRI professor and director, Vaccine Design of the IAVI Neutralizing Antibody Center at TSRI, in whose lab the engineered HIV vaccine protein was developed.

The body's immune system contains a large pool of different precursor B cells so it can respond to a wide variety of pathogens. But that also means that precursor B cells able to recognize a specific feature on a virus surface are exceedingly rare within the total pool of B cells.

"The challenge for vaccine developers is to determine if an immunogen can present a particular viral surface in a way that distinct B cells can be activated, proliferate and be useful," said study co-author Shane Crotty, professor at the La Jolla Institute. "Using a new technique, we were able to show—well in advance of clinical trials—that most humans actually have the right B cells that will bind to this vaccine candidate. It is remarkable that protein design can be so specific as to 'find' one in a million cells, demonstrating the feasibility of this new vaccine strategy."

The work offers encouraging insights for a planned Phase 1 clinical trial to test a nanoparticle version of the engineered HIV vaccine protein, the "eOD-GT8 60mer." "The goal of the clinical study will be to test safety and the ability of this engineered protein to elicit the desired immune response in humans that would look like the start of broadly neutralizing antibody development," Schief said. "Data from this new study was also important for designing the clinical trial, including the size and the methods of analysis."

In June, scientists from TSRI, IAVI and The Rockefeller University reported that the eOD-GT8 60mer produced antibody responses in mice that showed some of the traits necessary to recognize and inhibit HIV. If the eOD-GT8 60mer performs similarly in humans, additional boost immunogens are thought to be needed to ultimately induce broadly neutralizing antibodies that can block HIV.

The new work also provides a method for researchers to assess whether other new vaccine proteins can bind their intended precursor B cells. This method is a valuable tool in the design of more targeted and effective vaccines against AIDS, providing the ability to vet germline-targeting immunogens before testing them in large, time-consuming and costly clinical trials.

Looking at blood donated by healthy volunteers, the scientists found B cells that were capable of creating "VRC01-class" antibodies that recognized a critical surface patch, or epitope, of HIV. VRC01-class are a group of antibodies isolated from different individuals that appear to have developed in a very similar way, and it has been hypothesized that the starting VRC01-class B cells were very similar in the different people. The eOD-GT8 60mer is designed to engage these precursor B to initiate HIV broadly neutralizing antibody development.

Explore further: Scientists shows AIDS vaccine candidate successfully 'primes' immune system

More information: "HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen," Science, DOI: 10.1126/science.aad9195

Related Stories

Scientists shows AIDS vaccine candidate successfully 'primes' immune system

June 18, 2015
New research led by scientists at The Scripps Research Institute (TSRI), International AIDS Vaccine Initiative (IAVI) and The Rockefeller University shows in mice that an experimental vaccine candidate designed at TSRI can ...

Researchers unravel pathways of potent antibodies that fight HIV infection

March 3, 2016
One of the most crucial and elusive goals of an effective HIV vaccine is to stimulate antibodies that can attack the virus even as it relentlessly mutates.

Scientists engineer vaginal lactobacillus to express neutralizing HIV-1 antibody fragments

March 24, 2016
A normal, predominant bacterial species of the healthy vaginal microbiota can be engineered for potential use as a novel protective agent against HIV-1 transmission in women, according to a new publication from scientists ...

Scientists find surprising trait in anti-HIV antibodies

November 17, 2015
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.

Researchers model alternate ideas for an HIV vaccine

September 18, 2015
Scientists at Los Alamos National Laboratory have created a computational model that could change the way that researchers look at possibilities for an HIV-1 vaccine.

New TSRI study shows HIV structure in unprecedented detail

March 3, 2016
A new study from scientists at The Scripps Research Institute (TSRI) describes the high-resolution structure of the HIV protein responsible for recognition and infection of host cells.

Recommended for you

New injectable antiretroviral treatment proved to be as effective as standard oral therapy

August 3, 2017
Intramuscularly administered antiretroviral therapy (ART) may be as effective for HIV treatment as current oral therapies. This is the main conclusion of a Phase II clinical trial carried out by 50 research centers around ...

Research finds home-based kit would increase HIV testing

July 31, 2017
Research led by William Robinson, PhD, Associate Research Professor of Behavioral & Community Health Sciences at LSU Health New Orleans School of Public Health, has found that 86% of heterosexuals who are at high risk for ...

Scientists divulge latest in HIV prevention

July 25, 2017
A far cry from the 1990s "ABC" campaign promoting abstinence and monogamy as HIV protection, scientists reported on new approaches Tuesday allowing people to have all the safe sex they want.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.