Troublesome T cells have a healing side

April 14, 2016, Johns Hopkins University School of Medicine
Cross-section of injured mouse muscle tissue, with healthy tissue in pink and scar tissue shown in purple. Both mice genetically lack T cells; the mouse on the left was injected with T cells that became type 2 helper T cells and aided healing. Credit: Kenneth Estrellas/Johns Hopkins Medicine

Immune system cells linked to allergies also turn out to direct healing of mouse muscle wounds when paired with biologic "scaffolding" to support them, researchers from Johns Hopkins and the Kennedy Krieger Institute report. The finding, described in the April 15 issue of Science, adds to evidence that the immune system is key not just to fighting infectious and other diseases but also to kick-starting healing after an injury. They also indicate that so-called biomaterial scaffolds can more effectively spur healing if designed to "partner" with immune cells, the researchers say.

"In previous research, we've seen different system responses to the same biomaterial implanted in different tissues or environments, and that got us interested in how biomaterials might stimulate the to promote regeneration," says Jennifer Elisseeff, Ph.D., professor of ophthalmology and biomedical engineering at the Johns Hopkins University School of Medicine. "We still have a lot to learn, but this study is a step toward designing materials to elicit a beneficial immune response."

Elisseeff's research group designs biodegradable scaffolds, made of materials such as collagen, that have shown promise in promoting regrowth of damaged tissue, in part by giving the body's own stem a place to anchor and begin their work. But in the past few years, she says, other research groups have found evidence that such scaffolds could also spark healing activity from immune cells.

To learn more about the immune cells involved and their response, then-graduate student Kaitlyn Sadtler, Ph.D., worked with other researchers in Elisseeff's lab and specialists in cancer immunology. They surgically removed part of the thigh muscles of mice and implanted scaffolds known to promote healing in animals. After a week, wound sites with scaffolds had more than did wounds without scaffolds, and many of those cells were churning out a chemical signal, interleukin-4, that is frequently produced by so-called type 2 helper T cells.

To see what the role of those cells might be, the team did the same procedure on mice genetically modified to lack T cells and found that their wounds didn't ramp up interleukin production or heal as well as those of the normal mice. Further investigation revealed that one role of the type 2 helper T cells was to activate and train another type of immune cell, called macrophages, at the wound site. "The T cells tell the macrophages how to behave, making them pro-regenerative macrophages," says Sadtler.

Previous studies suggest several key healing roles for the macrophages: cleaning up dead or and other debris, recruiting and supporting that regrow tissue, and sparking the construction of new blood vessels to fuel new tissue in the area. But the pivotal role of type 2 helper T cells in scaffolds comes as a surprise, Elisseeff says: Those cells help fend off intestinal worms, but in the developed world, they're most often associated with triggering "bad" immune responses, such as allergies. "It's interesting to see something useful coming out of this pathway," she says.

Elisseeff notes that there is still much to learn about how respond to various kinds of biomaterials that might be used as scaffolds—an area her team continues to investigate.

"This study, in demonstrating for the first time the central role of T cells in mediating the tissue regenerative process, is truly groundbreaking," says Drew Pardoll, M.D., Ph.D., the Martin D. Abeloff Professor of Oncology in the Johns Hopkins' Kimmel Cancer Center and director of the Bloomberg~Kimmel Institute for Cancer Immunotherapy, who collaborated with Elisseeff on the study. "I predict it will be viewed as an inflection point, where regenerative immunology goes from an idea into a field of serious study. And it opens the door for totally novel strategies to significantly enhance tissue regeneration."

Explore further: Harnessing the body's immune system to heal wounds naturally

More information: "Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells," Science, DOI: 10.1126/science.aad9272

Related Stories

Harnessing the body's immune system to heal wounds naturally

January 6, 2016
In what could be a pivotal step toward repairing non-healing wounds and damaged organs, a Drexel University biomedical engineer has identified an immune cell as a potential strategy for growing blood vessels.

Enzyme involved in glucose metabolism promotes wound healing, study finds

March 10, 2016
An enzyme involved in glucose metabolism in cells plays a major role in the early steps of wound healing, a finding that could lead to new therapeutic approaches for wound care, according to researchers at Georgia State University.

Making cancer-fighting cells in the lab

February 16, 2016
The Shin Kaneko lab found that reprogramming one type of iNKT cells to iPS cells and then differentiating them back results in reprogrammed iNKT cells (re-iNKT cells) that show properties of another type. The ability to make ...

Nanoscale scaffolds and stem cells show promise in cartilage repair

July 17, 2012
Johns Hopkins tissue engineers have used tiny, artificial fiber scaffolds thousands of times smaller than a human hair to help coax stem cells into developing into cartilage, the shock-absorbing lining of elbows and knees ...

New study reveals how specialized cells help each other survive during times of stress

November 3, 2015
Nov. 3, 2015 - A team led by scientists from the Florida campus of The Scripps Research Institute (TSRI) and the University of Pittsburgh has shown for the first time how one set of specialized cells survives under stress ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.