Disruption of the body's internal clock causes disruption of metabolic processes

December 7, 2016

Chronobiologists from Charité – Universitätsmedizin Berlin have shown that the body's carbon monoxide metabolism is closely linked to the body's circadian (internal) clock. Carbon monoxide, a toxic gas found in exhaust fumes and cigarette smoke, is also an endogenous by-product of the degradation of heme, the hemoglobin cofactor responsible for giving red blood cells their color. The production of carbon monoxide is regulated by the body's internal clock, and this clock, in turn, is regulated by carbon monoxide. An article discussing the close reciprocal relationship between these two regulatory mechanisms has been published in the current issue of the journal Nature Structural & Molecular Biology.

A close link between metabolic processes and the body's internal clock ensures that our bodies are optimally adapted to environmental conditions, such as the availability and timing of meals. Cell-based circadian clocks, which detect signals from metabolic processes, also cause the relevant cellular metabolic processes to adapt in response to these signals. The disruption of one of these regulatory mechanisms results in the disruption of the other - a phenomenon manifested by the occurrence of conditions such as diabetes or metabolic syndrome in people whose internal clocks are disrupted e.g. as a result of shift work. Under the leadership of Prof. Dr. Achim Kramer, Head of the Chronobiology Research Unit at Charité's Institute for Medical Immunology, a team of researchers has been studying the role of heme (the iron-containing red pigment in ) for the body's . Heme is a complex molecule that is part of numerous other proteins and acts as a metabolic sensor.

"Our research has shown that , a that is also a by-product of the degradation of heme, has a crucial role in keeping the body's internal clock ticking as it should," explains Prof. Kramer. He adds: "The production of this molecule inside the cells of the liver can be disrupted through pharmacological inhibition, or by genetically switching off the expression of heme oxygenase - the enzyme required for its synthesis. As a result, normal internal rhythmicity is disrupted, the clock is slowed down." Perturbations of this kind result in the dysregulation of hundreds of different genes, which also happen to be responsible for essential , such as the synthesis of glucose. Results from this study help us to further understand how metabolic disorders and the body's are interlinked. By identifying the molecular mechanisms responsible for the body's circadian rhythms, we may be able to develop targeted therapies.

Explore further: Disrupting the brain's internal clock causes depressive-like behavior in mice

More information: Roman Klemz et al, Reciprocal regulation of carbon monoxide metabolism and the circadian clock, Nature Structural & Molecular Biology (2016). DOI: 10.1038/nsmb.3331

Related Stories

Disrupting the brain's internal clock causes depressive-like behavior in mice

November 29, 2016
Disruptions of daily rhythms of the body's master internal clock cause depression- and anxiety-like behaviors in mice, reports a new study in Biological Psychiatry. The findings provide insight into the role of the brain's ...

Gut microbe movements regulate host circadian rhythms

December 1, 2016
Even gut microbes have a routine. Like clockwork, they start their day in one part of the intestinal lining, move a few micrometers to the left, maybe the right, and then return to their original position. New research in ...

Kidneys have an innate clock that affects many metabolic processes in the body

April 7, 2016
An internal clock within the kidneys plays an important role in maintaining balance within the body, according to a study appearing in an upcoming issue of the Journal of the American Society of Nephrology (JASN).

Understanding the genes that make our circadian clocks tick

November 7, 2016
Have you ever wondered why you don't feel tired until late at night but your spouse is fast asleep at 10 p.m. and wakes spontaneously at 6 a.m.?

Protein maintains double duty as key cog in body clock and metabolic control

June 4, 2015
Around-the-clock rhythms guide nearly all physiological processes in animals and plants. Each cell in the body contains special proteins that act on one another in interlocking feedback loops to generate near-24 hour oscillations ...

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.