HIV hijacks common cells to spread infection

February 16, 2017, Gladstone Institutes
HIV infecting a human cell. Credit: NIH

Scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), together with collaborators in Europe, discovered that a common type of cell within the human reproductive and intestinal tracts assists HIV in infecting immune cells. Understanding how these cells aid HIV could lead to new methods that prevent HIV transmission.

The human reproductive system and intestinal tract are lined with a protective layer of cells, called the mucosa. Breaches in these layers, which can be caused by physical trauma or some , allow HIV to bypass the protective surface to access that can be infected by HIV.

In the new study, published in PLOS Pathogens, scientists used an experimental system that models the mucosa and surrounding tissues. Surprisingly, they discovered that fibroblasts, that are one of the most abundant types of cells in the mucosa, greatly increase HIV infection of immune cells. One way they do this is by transporting the virus to the body's immune cells, without themselves becoming infected, through a process called trans-infection.

"We were interested in understanding how cells commonly found in mucosal tissues affect the ability of HIV to infect immune cells," explained Nadia Roan, PhD, a visiting investigator at Gladstone and assistant professor at UCSF who is the senior author of the study. "We discovered that, remarkably, mucosal fibroblasts could potently increase how well HIV infected immune cells. Knowing how this occurs at the molecular level can help us find new ways to fight the virus."

The researchers examined mucosal fibroblasts from the cervix, uterus, foreskin, male urethra, and intestines—all portals of HIV entry. They found that fibroblasts from all of these tissues increased HIV infection. They did this not only by trans-infection, but also by making the immune cells more prone to infection by HIV. In future research supported by the National Institutes of Health, the researchers will study exactly how mucosal fibroblasts make immune cells more "infectable", which could ultimately lead to new targets for preventing HIV.

The scientists also tested a second abundant cell type found in mucosal tissues: . These cells line the mucosa, where they allow helpful substances to pass through to tissues in the body and also provide a barrier against harmful substances. What the scientists discovered was that in contrast to fibroblasts, epithelial cells secrete high levels of antiviral proteins that inhibit infection.

"Our work suggests that breaches in the mucosa allow HIV to bypass an antiviral environment to access fibroblasts, which in turn boost levels of HIV infection in CD4 T cells," said Warner Greene, MD, PhD, director of the Gladstone Institute of Immunology and Virology who was a senior investigator on the study. "Knowing the specific cells that allow HIV to take advantage of breaches in our defenses will enable us to find better ways to limit HIV transmission rates."

Explore further: How the border guards fail in HIV infection

Related Stories

How the border guards fail in HIV infection

January 26, 2017
The barrier between the gut and the bloodstream is severely damaged in the first few weeks of infection by HIV-1 virus. This can allow whole microbes in the intestine, as well as tiny pieces of bacteria, to enter the blood ...

What does it take for an AIDS virus to infect a person?

January 10, 2017
Upon sexual exposure, the AIDS virus must overcome some mighty barriers to find the right target cell and establish a new infection. It must traverse the genital mucosa and squeeze through tightly packed epithelial cells ...

Study shows how HIV breaches macrophage defenses, could be step towards cure

January 25, 2017
A team led by UCL researchers has identified how HIV is able to infect macrophages, a type of white blood cell integral to the immune system, despite the presence of a protective protein. They discovered a treatment that ...

Breakthrough for vaccine research: Mucosa forms special immunological memory

September 14, 2016
If a vaccine is to protect the intestines and other mucous membranes in the body, it also needs to be given through the mucosa, for example as a nasal spray or a liquid that is drunk. The mucosa forms a unique immunological ...

HIV particles do not cause AIDS, our own immune cells do

August 27, 2015
Researchers from the Gladstone Institutes have revealed that HIV does not cause AIDS by the virus's direct effect on the host's immune cells, but rather through the cells' lethal influence on one another.

Study identifies how Zika virus infects the placenta

August 18, 2016
In a new study, Yale researchers demonstrate Zika virus infection of cells derived from human placentas. The research provides insight into how Zika virus may be transmitted from expectant mother to fetus, resulting in infection ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.