Researchers explore a new method to study cholesterol distribution on cells

March 20, 2017, University of California, Los Angeles
NanoSIMS imaging of 'accessible cholesterol' on cultured cells, demonstrating increased amounts of accessible cholesterol on the microvilli projections from cells. Credit: Haibo Jiang and Stephen Young

Researchers from UCLA and the University of Western Australia have developed a new way of visualizing the distribution of cholesterol in cells and tissues. Their research provides insights into the movement of cholesterol into and out of cells and could eventually identify mechanisms linking cholesterol to coronary artery disease.

Using a new high-resolution imaging mass spectrometry approach called NanoSIMS imaging, the team was able to visualize and quantify a pool of cholesterol called "accessible cholesterol" on the surface of cells.

Cholesterol is an essential lipid and is critical for maintaining the integrity of the membrane in every cell in the body. But elevated levels of cholesterol in the blood represent a risk factor for .

The accessible pool of cholesterol on the plasma membrane is thought to play a role in regulating production of cholesterol by cells and likely plays a role in the ability of cells to unload surplus cholesterol. "Accessible cholesterol" on the surface of cells can be detected with a cholesterol-binding protein from bacteria.

By taking advantage of the bacterial protein, along with NanoSIMS imaging, researchers showed that the accessible pool of cholesterol is not evenly distributed on a cell's plasma membrane but instead is highly enriched on specialized projections from the plasma membrane called microvilli.

"In the past, other scientists had speculated that microvilli play a role in moving cholesterol into and out of cells," said the study's co-author, Dr. Stephen Young, a distinguished professor of medicine and human genetics at the David Geffen School of Medicine at UCLA. "The discovery that 'accessible cholesterol' is highly enriched in microvilli lends support to that idea."

The findings were recently published in the journal Proceedings of the National Academy of Sciences.

Dr. Haibo Jiang, a study co-author, noted that NanoSIMS imaging provides unique insights into cholesterol distribution on the and future studies will make it possible to assess mechanisms by which cells dispose of excess cholesterol.

"We would like to gain a better understanding of the mechanisms of cholesterol movement in and tissues," said Jiang, a lecturer from the University of Western Australia's Centre for Microscopy, Characterisation and Analysis. "We believe that NanoSIMS imaging could yield new strategies for lowering in the blood or at least new strategies for optimizing the effects of existing cholesterol-lowering drugs."

Added Young: "The plan now is to use NanoSIMS, along with novel biochemical approaches, to investigate distribution and movement in multiple cell types."

Explore further: Researchers study a new way to lower LDL cholesterol

More information: Cuiwen He et al. High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1621432114

Related Stories

Researchers study a new way to lower LDL cholesterol

March 7, 2017
In a paper published in Biochemical Pharmacology, Saint Louis University researchers examined the way a nuclear receptor called REV-ERB is involved in regulating cholesterol metabolism. Their findings suggest that drugs targeting ...

Prostate cancer cells grow with malfunction of cholesterol control in cells

February 21, 2017
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.

New role of cholesterol in regulating brain proteins discovered

February 23, 2017
A study led by researchers at the Hospital del Mar Medical Research Institute (IMIM) and the Faculty of Medicine in Charité Hospital, Berlin demonstrates that the cholesterol present in cell membranes can interfere with ...

Cholesterol helps regulate key signaling proteins in the cell

December 19, 2012
Cholesterol plays a key role in regulating proteins involved in cell signaling and may be important to many other cell processes, an international team of researchers has found.

High cholesterol in childhood

June 28, 2016
Dear Mayo Clinic: My grandson is 11 and already has high cholesterol. He does not eat a lot of junk food and plays many sports, but we do have high cholesterol in our family. Could this be hereditary, and, if so, is it common ...

Recommended for you

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Gradual release of immunotherapy at site of tumor surgery prevents tumors from returning

March 21, 2018
A new study by Dana-Farber Cancer Institute scientists suggests it may be possible to prevent tumors from recurring and to eradicate metastatic growths by implanting a gel containing immunotherapy during surgical removal ...

Immune cells in the retina can spontaneously regenerate

March 21, 2018
Immune cells called microglia can completely repopulate themselves in the retina after being nearly eliminated, according to a new study in mice from scientists at the National Eye Institute (NEI). The cells also re-establish ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.