Understanding the architecture of our 'second brain'

May 19, 2017
Nerve cells (yellow) from the same parent cell are organized in 3D columns that extend through the layers of the gut wall. Credit: Reena Lasrado

Scientists have made an important step in understanding the organisation of nerve cells embedded within the gut that control its function - a discovery that could give insight into the origin of common gastrointestinal diseases, including irritable bowel syndrome and chronic constipation.

The findings, published in Science, reveal how the enteric nervous system - a chaotic network of half a billion and many more supporting cells inside the gut wall - is formed during mouse development. The research was led by the Francis Crick Institute, in collaboration with the University of Leuven, Stanford University, the Hubrecht Institute and the Quadram Institute Bioscience. The work was funded by the Francis Crick Institute, the Medical Research Council and the UK Biotechnology and Biological Sciences Research Council.

Often known as the 'second brain' for its vast number of neurons and complex connectivity, the enteric nervous system has a crucial role in maintaining a healthy gut. Therefore, understanding how this neural mosaic is organised could help scientists find treatments for common gastrointestinal disorders.

"The gut wall is home to many types of nerve cells which appear to be distributed randomly," says Vassilis Pachnis, Group Leader at the Francis Crick Institute. "But despite this chaos, the neural networks of the gut are responsible for well organised and stereotypic functions such as production of stomach acid, movement of food along the gut, communication with and bacteria, and relay of information to the brain. We wanted to find out how organised activity emerges from such a chaotic system."

During development, a unique and dynamic population of cells known as progenitor cells divide to produce copies of themselves, which can then generate many other types of cells. Using genetic tools, the team labelled individual of the enteric nervous system with unique colours and followed their descendants - also marked with the same colour - through development and into the adult animal. By examining the type of cells produced by single progenitors, they could understand their properties.

They found that some progenitors only produced nerve cells, others only produced nerve-supporting cells called glia, and some produced both. Neurons and glia originating from the same parent stayed close to each other, forming relatively tight groups of cells. Cell groups that descended from different but neighbouring parent cells overlapped like a Venn diagram that could be viewed on the gut surface. Interestingly, this close relationship was maintained by the descendants of single progenitors down through all layers of the gut wall thereby forming overlapping columns of cells.

"We uncovered a set of rules that control the organisation of the 'second brain' not just along a single gut layer but across the 3-D space of the gut wall," says Reena Lasrado, first author of the paper and researcher in Vassilis's lab at the Crick.

The team explored whether this intricate structure of the enteric nervous system also contributes to nerve cell activity in the gut.

"A subtle electrical stimulation to the enteric nervous system showed that nerve cells generated by the same parent cell responded in synchrony," says Vassilis. "This suggests that developmental relationships between of the enteric nervous system of mammals are fundamental for the neural regulation of gut function."

"Now that we have a better understanding of how the enteric nervous system is built and works, we can start to look at what happens when things go wrong particularly during the critical stages of embryo development or early life. Perhaps mistakes in the blueprint used to build the neural networks of the gut are the basis of common gastrointestinal problems."

The paper 'Lineage-dependent spatial and functional organization of the mammalian enteric nervous system' is published in Science.

Explore further: Researchers discover birth-and-death life cycle of neurons in the adult mouse gut

More information: Reena Lasrado et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system, Science (2017). DOI: 10.1126/science.aam7511

Related Stories

A gut feeling about neural stem cells

February 1, 2013

Proper function of the digestive system requires coordinated contraction of the muscle in the wall of the intestinal tract, regulated by the enteric nervous system. Damage or loss of these neurons can result in intestinal ...

Recommended for you

Forgetting can make you smarter

June 21, 2017

For most people having a good memory means being able to remember more information clearly for long periods of time. For neuroscientists too, the inability to remember was long believed to represent a failure of the brain's ...

Serotonin improves sociability in mouse model of autism

June 21, 2017

Scientists at the RIKEN Brain Science Institute (BSI) in Japan have linked early serotonin deficiency to several symptoms that occur in autism spectrum disorder (ASD). Published in Science Advances, the study examined serotonin ...

Three ways neuroscience can advance the concussion debate

June 21, 2017

While concussion awareness has improved over the past decade, understanding the nuances of these sports injuries, their severity, symptoms, and treatment, is still a work in progress. In the June 21 issue of Neuron, UCLA ...

The brain mechanism behind multitasking

June 21, 2017

Although "multitasking" is a popular buzzword, research shows that only 2% of the population actually multitasks efficiently. Most of us just shift back and forth between different tasks, a process that requires our brains ...

Untangling the complex puzzle of optic nerve regeneration

June 21, 2017

The optic nerve is vital for vision—damage to this critical structure can lead to severe and irreversible loss of vision. Fengfeng Bei, PhD, a principal investigator in the Department of Neurosurgery at Brigham and Women's ...

Researchers discover brain inflammation in people with OCD

June 21, 2017

A new brain imaging study by the Centre for Addiction and Mental Health (CAMH) shows for the first time that brain inflammation is significantly elevated - more than 30 per cent higher - in people with obsessive-compulsive ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Whydening Gyre
not rated yet May 19, 2017
I always thought it was the FIRST brain...
baudrunner
not rated yet May 19, 2017
It's the same brain. All the nerve cells in your body are part of the overall brain of the system, and the "nerves" are axons and dendrites. The longest neuron in the body is the sciatic nerve. The cerebral cortex, which is the "thinking part of the brain" - is only a couple of millimeters thick at best, and this compares to what has now been discovered about the neurons of the enteric system.
gzurbay
not rated yet May 21, 2017
Consideration of the micro biome and influence of metabolites which could shift the action of mind-gut nervous system should be of a prime concern, - as it would likely influence the baseline functioning of the organism.

For examples consider Ergot, chronic microbe infection and subtle "poisoning" such as may be the case in IBS, Arthritis, MS, ALS, Cancer, etc.

gzurbay
not rated yet May 21, 2017
https://medicalxp...nal.html

Related research micro biome and brain disease.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.