Drug discovery: Alzheimer's and Parkinson's spurred by same enzyme

July 3, 2017, Emory University
A Parkinson's disease brain sample, stained with an antibody that only recognizes the N103 chunk of alpha-synuclein, which is generated through cleavage by AEP. Credit: From Zhang et al NSMB (2017).

Alzheimer's disease and Parkinson's disease are not the same. They affect different regions of the brain and have distinct genetic and environmental risk factors.

But at the biochemical level, these two neurodegenerative diseases start to look similar. That's how Emory scientists led by Keqiang Ye, PhD, landed on a potential drug target for Parkinson's.

In both Alzheimer's (AD) and Parkinson's (PD), a sticky protein forms toxic clumps in . In AD, the troublemaker inside cells is called tau, making up neurofibrillary tangles. In PD, the sticky protein is alpha-synuclein, forming Lewy bodies.

Ye and his colleagues had previously identified an enzyme (asparagine endopeptidase or AEP) that trims tau in a way that makes it more sticky and toxic. Drugs that inhibit AEP have beneficial effects in Alzheimer's animal models.

In a new Nature Structural and Molecular Biology paper, Emory researchers show that AEP acts in the same way toward .

"In Parkinson's, alpha-synuclein behaves much like Tau in Alzheimer's," Ye says. "We reasoned that if AEP cuts Tau, it's very likely that it will cut alpha-synuclein too."

A particular chunk of alpha-synuclein produced by AEP's scissors can be found in samples of brain tissue from patients with PD, but not in control samples, Ye's team found.

In control brain samples AEP was confined to lysosomes, parts of the cell with a garbage disposal function. But in PD samples, AEP was leaking out of the lysosomes to the rest of the cell.

The researchers also observed that the chunk of alpha-synuclein generated by AEP is more likely to aggregate into clumps than the full length protein, and is more toxic when introduced into cells or mouse brains. In addition, alpha-synuclein mutated so that AEP can't cut it is less toxic.

Ye cautions that AEP is not the only enzyme that cuts alpha-synuclein into various toxic pieces, and the full-length alpha-synuclein protein is still able to aggregate and cause harm. Nevertheless, he says his team is moving on to testing drugs that inhibit AEP in Parkinson's animal models.

Explore further: Pre-clinical study suggests Parkinson's could start in gut endocrine cells

More information: Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson's disease, Nature Structural and Molecular Biology, DOI: 10.1038/nsmb.3433

Related Stories

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

A human enzyme can reduce neurotoxic amyloids in a mouse model of dementia

June 27, 2017
A naturally occurring human enzyme -called cyclophilin 40 or CyP40- can unravel protein aggregates that contribute to both Alzheimer's disease and Parkinson's disease, according to a study publishing June 27 in the open access ...

Balance and movement improved in animal model of Parkinson's disease

June 12, 2017
Researchers at UCLA have developed a molecular compound that improves balance and coordination in mice with early stage Parkinson's disease. Further, the drug, called CLR01, reduced the amount of a toxic protein in the brain ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

Research provides new understanding of Parkinson's and Alzheimer's disease and opens path to treatment

October 26, 2016
A team of scientists at Baylor College of Medicine and Texas Children's Hospital has discovered that in three separate laboratory models, the protein TRIM28 can promote the accumulation of two key proteins that drive the ...

Recommended for you

Environmental factors may trigger onset of multiple sclerosis

October 16, 2018
A new Tel Aviv University study finds that certain environmental conditions may precipitate structural changes that take place in myelin sheaths in the onset of multiple sclerosis (MS). Myelin sheaths are the "insulating ...

Study points to possible new therapy for hearing loss

October 15, 2018
Researchers have taken an important step toward what may become a new approach to restore hearing loss. In a new study, out today in the European Journal of Neuroscience, scientists have been able to regrow the sensory hair ...

Scientists examine how neuropathic pain responds to Metformin

October 15, 2018
Scientists seeking an effective treatment for one type of chronic pain believe a ubiquitous, generic diabetes medication might solve both the discomfort and the mental deficits that go with the pain.

Sugar, a 'sweet' tool to understand brain injuries

October 15, 2018
Australian researchers have developed ground-breaking new technology which could prove crucial in treating brain injuries and have multiple other applications, including testing the success of cancer therapies.

Abnormal vision in childhood can affect brain functions

October 13, 2018
A research team has discovered that abnormal vision in childhood can affect the development of higher-level brain areas responsible for things such as attention.

Study: Ketogenic diet appears to prevent cognitive decline in mice

October 12, 2018
We've all experienced a "gut feeling"—when we know deep down inside that something is true. That phenomenon and others (like "butterflies in the stomach") aptly describe what scientists have now demonstrated: that the gut ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.