Method of accelerating the maturation of stem cells to form neurons discovered

October 25, 2017, Universitaet Mainz

Very little is still known about how neurons can be generated from stem cells. Researchers at the University Medical Center of Johannes Gutenberg University Mainz (JGU) have now developed a promising technique that will facilitate the differentiation of stem cells into neurons. This even enables them to accelerate the maturation process. For this purpose, they use a hydrogel to create a stiffness-controlled scaffold for artificial brain tissue that furthermore stimulates the development of neurons. The team subsequently plans to investigate how hydrogel-based biomaterials can be injected into severely damaged brain regions in order to improve brain tissue regeneration. Over the long term it is hoped it will be possible to provide help to stroke victims or those suffering from neurodegenerative diseases. The Mainz-based researchers have recently published their findings in the leading journal Stem Cell Reports.

"We used a new type of biomaterial in our experiments. Its structure and consistency can be modified to create properties similar to those of the human . It has the same elasticity as cerebral tissue and has special adhesive molecules that promote neuronal fate and neurogenesis, thus creating the ideal conditions for neurogenesis," said Dr. Marcelo Salierno of the Institute of Physiological Chemistry at the Mainz University Medical Center, who is heading up the project. Salierno is a member of Professor Benedikt Berninger's research team at the Institute of Physiological Chemistry.

In addition to the physiological proteins present in the brain, the hydrogel also contains the synthetic adhesive molecule IKVAV. The resulting biomaterial accelerates the process and increases the chances to generate neurons from . Salierno was able to demonstrate this effect in his experiments. "The combination of the two factors, i.e., neural surface adhesion and the brain-like elasticity of the material, foster the controlled development of stem into neurons," added Salierno.

The series of experiments undertaken by the scientists working with Dr. Marcelo Salierno were initially performed in vitro. As a result, the researchers were able to observe how the new biomaterial interacts with human cells and how differentiate into neural cells. "The next step would be to modify the hydrogel so that it would be possible to inject it into damaged ," explained Salierno. "These are the very first steps along a very ambitious path but we believe that in the near future those suffering from neuronal degeneration will benefit from our discovery."

Explore further: Does brain tissue regeneration depend on maturity of stem cells used for transplantation?

More information: Aleeza Farrukh et al, Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis, Stem Cell Reports (2017). DOI: 10.1016/j.stemcr.2017.09.002

Related Stories

Does brain tissue regeneration depend on maturity of stem cells used for transplantation?

September 13, 2017
New research has shown that the success of transplanting stem cells into the brain to regenerate tissue damaged by stroke may depend on the maturity of the neuronal precursor cells used for transplantation. A study demonstrating ...

First evidence of ischemia-induced multipotent stem cells in post-stroke human brain

May 3, 2017
Researchers have shown that following a stroke-induced ischemic injury to the human brain, stem cells are produced that have the potential to differentiate and mature to form neurons that can help repair the damage to the ...

Limited self-renewal of stem cells in the brain

March 11, 2015
Stem cells in the brain can produce neurons and are consequently seen as a hope for treatment. A team of researchers from the Helmholtz Zentrum München and Ludwig-Maximilians-Universität München (LMU) has now discovered ...

Distant brain regions selectively recruit stem cells

June 16, 2017
Stem cells persist in the adult mammalian brain and generate new neurons throughout life. A research group at the Biozentrum of the University of Basel reports in the current issue of Science that long-distance brain connections ...

New human neurons from adult cells right there in the brain

October 4, 2012
Researchers have discovered a way to generate new human neurons from another type of adult cell found in our brains. The discovery, reported in the October 5th issue of Cell Stem Cell, a Cell Press publication, is one step ...

New findings about stem cells in the brain of patients with epilepsy

December 15, 2016
Neural stem cells have been found in epileptic brain tissue—outside the regions of the brain where they normally reside. In a group of patients who underwent surgery for epilepsy, over half had stem cells where healthy ...

Recommended for you

Left, right and center: mapping emotion in the brain

June 19, 2018
According to a radical new model of emotion in the brain, a current treatment for the most common mental health problems could be ineffective or even detrimental to about 50 percent of the population.

Often overlooked glial cell is key to learning and memory

June 18, 2018
Glial cells surround neurons and provide support—not unlike hospital staff and nurses supporting doctors to keep operations running smoothly. These often-overlooked cells, which include oligodendrocytes and astrocytes, ...

Electrically stimulating the brain may restore movement after stroke

June 18, 2018
UC San Francisco scientists have improved mobility in rats that had experienced debilitating strokes by using electrical stimulation to restore a distinctive pattern of brain cell activity associated with efficient movement. ...

Neuroscientists map brain's response to cold touch

June 18, 2018
Carnegie Mellon University neuroscientists have mapped the feeling of cool touch to the brain's insula in a mouse model. The findings, published in the June 15 issue of Journal of Comparative Neurology, provide an experimental ...

iReadMore app improves reading ability of stroke patients

June 18, 2018
A new smart app designed to improve the reading ability of people who have suffered a stroke provides 'significant' improvements, a UCL study has found.

Brain matures faster due to childhood stress

June 15, 2018
Stress in early childhood leads to faster maturation of certain brain regions during adolescence. In contrast, stress experienced later in life leads to slower maturation of the adolescent brain. This is the outcome of a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.