Biomarker may predict early Alzheimer's disease

November 10, 2017
DAG (green-labeled peptide) targeting to the brain blood vessel (labeled red) in the hippocampus of the Alzheimer brain. Credit: Ruoslahti Lab, SBP

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a peptide that could lead to the early detection of Alzheimer's disease (AD). The discovery, published in Nature Communications, may also provide a means of homing drugs to diseased areas of the brain to treat AD, Parkinson's disease, as well as glioblastoma, brain injuries and stroke.

"Our goal was to find a new biomarker for AD," says Aman Mann, Ph.D., research assistant professor at SBP who shares the lead authorship of the study with Pablo Scodeller, Ph.D., a postdoctoral researcher at SBP. "We have identified a peptide (DAG) that recognizes a protein that is elevated in the of AD mice and human patients. The DAG target, connective tissue growth factor (CTGF) appears in the AD brain before , the pathological hallmark of AD."

"CTGF is a protein that is made in the brain in response to inflammation and tissue repair," explains Mann. "Our finding that connects elevated levels of CTGF with AD is consistent with the growing body of evidence suggesting that inflammation plays an important role in the development of AD."

The research team identified the DAG peptide using in vivo phage display screening at different stages of AD development in a mouse model. In young AD mice, DAG detected the earliest stage of the disease. If the early appearance of the DAG target holds true in humans, it would mean that DAG could be used as a tool to identify patients at early, pre-symptomatic stages of the disease when treatments already available may still be effective.

"Importantly, we showed that DAG binds to cells and brain from AD human patients in a CTGF-dependent manner" says Mann. "This is consistent with an earlier report of high CTGF expression in the brains of AD patients."

Dr. Aman Mann of the Sanford Burnham Prebys Medical Discovery Institute discusses a finding that may lead to earlier detection and treatment of Alzheimer's disease. Credit: Kristen Cusato

"Our findings show that endothelial cells, the cells that form the inner lining of blood vessels, bind our DAG peptide in the parts of the mouse brain affected by the disease," says Erkki Ruoslahti, M.D., Ph.D., distinguished professor at SBP and senior author of the paper. "This is very significant because the endothelial cells are readily accessible for probes injected into the blood stream, whereas other types of cells in the brain are behind a protective wall called the blood-brain barrier. The change in AD blood vessels gives us an opportunity to create a diagnostic method that can detect AD at the earliest stage possible.

"But first we need to develop an imaging platform for the technology, using MRI or PET scans to differentiate live AD mice from normal mice. Once that's done successfully, we can focus on humans," adds Ruoslahti.

"As our research progresses we also foresee CTGF as a potential therapeutic target that is unrelated to amyloid beta (Aβ), the toxic protein that creates brain plaques," says Ruoslahti. "Given the number of failed clinical studies that have sought to treat AD patients by targeting Aβ, it's clear that treatments will need to be given earlier—before amyloid plaques appear—or have to target entirely different pathways.

"DAG has the potential to fill both roles—identifying at risk individuals prior to overt signs of AD and targeted delivery of drugs to diseased areas of the brain. Perhaps CTGF itself can be a drug target in AD and other disorders linked to inflammation. We'll just have to learn more about its role in these diseases".

This technology has been licensed to a startup company, AivoCode Inc.

Explore further: Alzheimer's disease might be a 'whole body' problem

Related Stories

Alzheimer's disease might be a 'whole body' problem

October 31, 2017
Alzheimer's disease, the leading cause of dementia, has long been assumed to originate in the brain. But research from the University of British Columbia and Chinese scientists indicates that it could be triggered by breakdowns ...

Here's what we think Alzheimer's does to the brain

November 6, 2017
Around 50m people worldwide are thought to have Alzheimer's disease. And with rapidly ageing populations in many countries, the number of sufferers is steadily rising.

New technology could deliver drugs to brain injuries

June 28, 2016
A new study led by scientists at the Sanford Burnham Prebys Medical Discovery Institute (SBP) describes a technology that could lead to new therapeutics for traumatic brain injuries. The discovery, published today in Nature ...

Researchers identify new cause of brain defects in tuberous sclerosis patients

February 9, 2017
Boston Children's Hospital researchers have uncovered a new molecular pathway that inhibits the myelination of neurons in the brains of patients with the rare genetic disorder tuberous sclerosis complex (TSC). The study, ...

Drugs targeting blood vessels may be candidates for treating Alzheimer's

March 7, 2013
(Medical Xpress)—University of British Columbia researchers have successfully normalized the production of blood vessels in the brain of mice with Alzheimer's disease (AD) by immunizing them with amyloid beta, a protein ...

Earlier Alzheimer's diagnosis may be possible with new imaging compound

November 2, 2016
By the time unambiguous signs of memory loss and cognitive decline appear in people with Alzheimer's disease, their brains already are significantly damaged, dotted with clumps of a destructive protein known as amyloid beta. ...

Recommended for you

Alzheimer's Tau protein forms toxic complexes with cell membranes

November 22, 2017
The brains of patients with Alzheimer's disease contain characteristic tangles inside neurons. These tangles are formed when a protein called Tau aggregates into twisted fibrils. As a result, the neurons' transport systems ...

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Researchers describe new biology of Alzheimer's disease

November 20, 2017
In a new study, researchers from Boston University School of Medicine (BUSM) describe a unique model for the biology of Alzheimer's disease (AD) which may lead to an entirely novel approach for treating the disease. The findings ...

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.