Multifunctional protein contributes to blood cell development

December 21, 2017, Salk Institute

Like an actor who excels at both comedy and drama, proteins also can play multiple roles. Uncovering these varied talents can teach researchers more about the inner workings of cells. It also can yield new discoveries about evolution and how proteins have been conserved across species over hundreds of millions of years.

In a new finding, a team of investigators from the Salk Institute has uncovered in a previously unknown job for a protein called nup98. In addition to helping control the movement of molecules in and out of the nucleus of the cell, they found that it also helps direct the development of , enabling immature to differentiate into many specialized mature . Further, they discovered the mechanism by which—when perturbed—this differentiation process can contribute to the formation of certain types of leukemia. The findings are published in Genes & Development.

"This research was really a tour de force," says Martin Hetzer, Salk's Chief Science Officer and the study's senior author. "Tobias Franks, my postdoctoral researcher at the time and the paper's first author, used an approach that combined genomics, proteomics, and cell biology. This model wasn't easy to study, and he developed some very clever techniques in the lab to answer these questions."

For years, Hetzer's lab has focused on a class of proteins called nucleoporins (nups for short), which are part of the complex. This complex regulates traffic between the nucleus of the cell, where the genetic material is located, and the cytoplasm, which contains other cellular structures. There are about 30 proteins in the nucleoporin family, and they carry out a number of different functions in addition to forming the nuclear pore. Several of them are known to act as transcription factors: This means they help to regulate when and how genes get translated into proteins.

The finding that nup98 has this additional function was not entirely unexpected. Earlier research from Hetzer's lab had found that it plays a role in gene regulation in other cell types. But the team didn't know about its function in hematopoietic (blood) cells.

In addition, until now the mechanism of how nup98 regulates transcription was not known. The investigators found that it acts through a link with a complex called Wdr82-Set1/COMPASS, which is part of the cell's epigenetic machinery. "This epigenetic process helps to control when genes are transcribed into proteins and when transcription is blocked," says Hetzer, who also holds the Jesse and Caryl Phillips Foundation Chair.

Another thing that was different about this study is that it was done in mouse cells rather than simpler model organisms like yeast and fruit flies. "This is the first mechanistic insight of how one of these nup proteins works in mammals," Hetzer adds. "We have only touched the surface here in uncovering how this evolutionarily conserved mechanism works in mammalian ." Future work in his lab will extend the study of nup98 to primates and humans.

While Hetzer has no immediate plans to pursue their findings as an avenue for developing leukemia drugs, he says it's likely that others may pick up on this aspect of the research. Disruption of the cell differentiation process that contributes to leukemia results from a single gene fusion, when two parts of chromosomes that are not meant to act on each other become linked. He says that cancers driven by a single genetic change like this have proven easier to block with drugs than cancer driven by multiple genetic alterations.

Explore further: Scientists find interaction between two key proteins regulates development of neurons

More information: Tobias M. Franks et al. Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells, Genes & Development (2017). DOI: 10.1101/gad.306753.117

Related Stories

Scientists find interaction between two key proteins regulates development of neurons

September 14, 2017
Salk Institute scientists have discovered that an interaction between two key proteins helps regulate and maintain the cells that produce neurons. The work, published in Cell Stem Cell on September 14, 2017, offers insight ...

Heart disease, leukemia linked to dysfunction in nucleus

November 2, 2016
We put things into a container to keep them organized and safe. In cells, the nucleus has a similar role: keeping DNA protected and intact within an enveloping membrane. But a new study by Salk Institute scientists, detailed ...

Gaining insight into the molecular mechanisms behind squamous cell cancer

December 19, 2017
Researchers at Kanazawa University report in EMBO Reports about a new molecular mechanism regulating cellular fate of squamous cell carcinomas. Squamous cell carcinoma (SCC) is a lethal cancer arising from the stratified ...

Protein turnover could be clue to living longer

August 30, 2017
It may seem paradoxical, but studying what goes wrong in rare diseases can provide useful insights into normal health. Researchers probing the premature aging disorder Hutchinson-Gilford progeria have uncovered an errant ...

Recommended for you

Analytical tool predicts genes that can cause disease by producing altered proteins

July 19, 2018
Predicting genes that can cause disease due to the production of truncated or altered proteins that take on a new or different function, rather than those that lose their function, is now possible thanks to an international ...

Childhood stress leaves lasting mark on genes

July 18, 2018
Kids who experience severe stress are more likely to develop a host of physical and mental health problems by the time they reach adulthood, including anxiety, depression and mood disorders. But how does early life stress ...

Study shows DNA methylation related to liver disease among obese patients

July 18, 2018
DNA methylation is a molecular process that helps enable our bodies to repair themselves, fight infection, get rid of environmental toxins, and even to think. But sometimes this process goes awry.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

World's largest study on allergic rhinitis reveals new risk genes

July 17, 2018
An international team of scientists led by Helmholtz Zentrum München and University of Copenhagen has presented the largest study so far on allergic rhinitis in the journal Nature Genetics. The data of nearly 900,000 participants ...

New platform poised to be next generation of genetic medicines

July 16, 2018
A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.