Neuroscientists identify a circuit that helps the brain record memories of new locations

December 27, 2017 by Anne Trafton, Massachusetts Institute of Technology
The image shows the locus coeruleus, which drives neuronal circuits of the hippocampus and enables novel contextual memory. The red staining shows norepinephrine transporter (NET)-positive cells, indicating the locus coeruleus. The green staining shows adeno-associated virus (AAV)-mediated expressions of light-sensitive inhibitory opsin, archaerhodopsin (Arch). The blue staining shows all cells in the brain stem. Credit: Akiko Wagatsuma, Tonegawa Lab

When you enter a room, your brain is bombarded with sensory information. If the room is a place you know well, most of this information is already stored in long-term memory. However, if the room is unfamiliar to you, your brain creates a new memory of it almost immediately.

MIT neuroscientists have now discovered how this occurs. A small region of the brainstem, known as the , is activated in response to novel sensory stimuli, and this activity triggers the release of a flood of dopamine into a certain region of the hippocampus to store a of the new location.

"We have the remarkable ability to memorize some specific features of an experience in an entirely new environment, and such ability is crucial for our adaptation to the constantly changing world," says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience and director of the RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory.

"This study opens an exciting avenue of research into the circuit mechanism by which behaviorally relevant stimuli are specifically encoded into , ensuring that important stimuli are stored preferentially over incidental ones," adds Tonegawa, the senior author of the study.

Akiko Wagatsuma, a former MIT research scientist, is the lead author of the study, which appears in the Proceedings of the National Academy of Sciences the week of Dec. 25.

New places

In a study published about 15 years ago, Tonegawa's lab found that a part of the hippocampus called the CA3 is responsible for forming memories of novel environments. They hypothesized that the CA3 receives a signal from another part of the brain when a novel place is encountered, stimulating memory formation.

They believed this signal to be carried by chemicals known as neuromodulators, which influence neuronal activity. The CA3 receives neuromodulators from both the locus coeruleus (LC) and a region called the (VTA), which is a key part of the brain's reward circuitry. The researchers decided to focus on the LC because it has been shown to project to the CA3 extensively and to respond to novelty, among many other functions.

The LC responds to an array of sensory input, including visual information as well as sound and odor, then sends information on to other brain areas, including the CA3. To uncover the role of LC-CA3 communication, the researchers genetically engineered mice so that they could block the between those regions by shining light on neurons that form the connection.

To test the mice's ability to form new memories, the researchers placed the mice in a large open space that they had never seen before. The next day, they placed them in the same space again. Mice whose LC-CA3 connections were not disrupted spent much less time exploring the space on the second day, because the environment was already familiar to them. However, when the researchers interfered with the LC-CA3 connection during the first exposure to the space, the mice explored the area on the second day just as much as they had on the first. This suggests that they were unable to form a memory of the new environment.

The LC appears to exert this effect by releasing the neuromodulator dopamine into the CA3 region, which was surprising because the LC is known to be a major source of norepinephrine to the hippocampus. The researchers believe that this influx of dopamine helps to boost CA3's ability to strengthen synapses and form a memory of the new location.

They found that this mechanism was not required for other types of memory, such as memories of fearful events, but appears to be specific to memory of new environments. The connections between the LC and CA3 are necessary for long-term spatial memories to form in CA3.

"The selectivity of successful has long been a puzzle," says Richard Morris, a professor of neuroscience at the University of Edinburgh, who was not involved in the research. "This study goes a long way toward identifying the brain mechanisms of this process. Activity in the pathway between the locus coeruleus and CA3 occurs most strongly during novelty, and it seems that activity fixes the representations of everyday experience, helping to register and retain what's been happening and where we've been."

Choosing to remember

This mechanism likely evolved as a way to help animals survive, allowing them to remember new environments without wasting brainpower on recording places that are already familiar, the researchers say.

"When we are exposed to sensory information, we unconsciously choose what to memorize. For an animal's survival, certain things are necessary to be remembered, and other things, familiar things, probably can be forgotten," Wagatsuma says.

Still unknown is how the LC recognizes that an environment is new. The researchers hypothesize that some part of the brain is able to compare new environments with stored memories or with expectations of the , but more studies are needed to explore how this might happen.

"That's the next big question," Tonegawa says. "Hopefully new technology will help to resolve that."

Explore further: How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

More information: Akiko Wagatsuma et al. Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1714082115

Related Stories

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

Neuroscientists build case for new theory of memory formation

October 23, 2017
Learning and memory are generally thought to be composed of three major steps: encoding events into the brain network, storing the encoded information, and later retrieving it for recall.

How odours are turned into long-term memories

December 22, 2017
The neuroscientists Dr. Christina Strauch and Prof Dr. Denise Manahan-Vaughan from the Ruhr-Universität Bochum have investigated which brain area is responsible for storing odours as long-term memories. Some odours can trigger ...

Scientists identify neurons devoted to social memory

September 30, 2016
Mice have brain cells that are dedicated to storing memories of other mice, according to a new study from MIT neuroscientists. These cells, found in a region of the hippocampus known as the ventral CA1, store "social memories" ...

Researchers identify potential mediator for social memory formation

November 15, 2017
Research by a group of scientists at the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) have discovered that a tiny brain region plays a critical role in the formation ...

How the brain encodes time and place

September 23, 2015
When you remember a particular experience, that memory has three critical elements—what, when, and where. MIT neuroscientists have now identified a brain circuit that processes the "when" and "where" components of memory.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.