Heart-muscle patches made with human cells improve heart attack recovery

heart
Credit: CC0 Public Domain

Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery from heart attack injury.

The results are a step closer to the goal of treating human attacks by suturing cardiac-muscle patches over an area of dead heart muscle in order to reduce the pathology that often leads to heart failure.

The research was led by Jianyi "Jay" Zhang, M.D., Ph.D., the chair of University of Alabama at Birmingham Biomedical Engineering, a joint department of the UAB School of Medicine and the UAB School of Engineering.

Each is 1.57 by 0.79 inches in size and nearly as thick as a dime. Zhang and colleagues found that transplanting two of these patches onto the infarcted area of a pig heart significantly improved function of the heart's left ventricle, the major pumping chamber. The patches also significantly reduced infarct size, which is the area of dead muscle; heart-muscle wall stress and heart-muscle enlargement; as well as significantly reducing apoptosis, or programmed cell death, in the scar boarder area around the dead heart muscle. Furthermore, the patches did not induce arrhythmia in the hearts, a serious complication observed in some past biomedical engineering approaches to treat heart attacks.

The dishes on the rocker are growing large, human cardiac-muscle patches. This rocking at 45 rpm during growth greatly improves the maturation of cardiomyocyte cells. Each patch, intended for transplantation to an infarcted heart, measures about 1.6 by 0.8 inches in size and is the thickness of a dime. Credit: UAB

A key to success of the patches is how they are engineered.

Each patch is a mixture of three cell types—4 million cardiomyocytes, or ; 2 million endothelial , which are well-known to help cardiomyocytes survive and function in a micro-environment; and 2 million , which line blood vessels. The three cell types were differentiated from cardiac-lineage, human induced , or hiPSCs, rather than using hiPSCs created from skin cells or other cell types.

Each patch was grown in a three-dimensional fibrin matrix that was rocked back and forth for a week. The cells begin to beat synchronously after one day.

This mixture of three and the dynamic rocking produced more heart muscle cells that were more mature, with superior heart-muscle physiological function and contractive force, as compared with patches made from a monolayer of cells that are not dynamically rocked. The patches resembled native heart-muscle tissue in their physiological and contractile properties.

To prepare large, human cardiac-muscle patches for transplantation to infarcted hearts, they were grown on a rocker for 7 days. At that time, the patches show spontaneous and synchronized contractions. Credit: UAB

Past attempts to use hiPSCs to treat animal models of heart attacks—using an injection of cells or cells grown as a very thin film—have shown very low rates of survival, or engraftment, by the hiPSCs. The present study had a relatively high rate of engraftment, 10.9 percent, four weeks after transplantation, and the transplantation led to improved heart recovery.

Part of the beneficial effects of the patches may occur through the release of tiny blebs called exosomes from cells in the patches. These exosomes, which carry proteins and RNA from one cell to another, are a common cell-to-cell signaling method that is incompletely understood. In tissue culture experiments, the researchers found that exosomes released from the large heart-muscle patches appeared to protect the survival of heart-muscle cells.

Additionally, the patches appeared to prevent or reverse detrimental changes in protein phosphorylation in the sarcomeres of the heart-muscle tissue bordering the infarcted area of the heart. This result is the first to suggest that hiPSC-derived heart cells may improve contractile function after heart attacks by lessening maladaptive changes in phosphorylation states of sarcomeric proteins. The sarcomere is the contractile unit in a heart-muscle cell myofibril.

More information: Ling Gao et al, Large Cardiac-Muscle Patches Engineered from Human Induced-Pluripotent Stem-Cell-Derived Cardiac Cells Improve Recovery from Myocardial Infarction in Swine, Circulation (2017). DOI: 10.1161/CIRCULATIONAHA.117.030785

Journal information: Circulation
Citation: Heart-muscle patches made with human cells improve heart attack recovery (2018, January 10) retrieved 19 April 2024 from https://medicalxpress.com/news/2018-01-heart-muscle-patches-human-cells-heart.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Tissue engineering advance reduces heart failure in model of heart attack

8 shares

Feedback to editors