Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018, University of Cambridge
Demyelination by MS. The CD68 colored tissue shows several macrophages in the area of the lesion. Original scale 1:100. Credit: Marvin 101/Wikipedia

Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis (MS).

The study, led by researchers at the University of Cambridge, is a step towards developing personalised treatment based on a patient's own for diseases of the central nervous system (CNS).

In MS, the body's own immune system attacks and damages myelin, the protective sheath around nerve fibres, causing disruption to messages sent around the brain and . Symptoms are unpredictable and include problems with mobility and balance, pain, and severe fatigue.

Key immune cells involved in causing this damage are macrophages (literally 'big eaters'), which ordinarily serve to attack and rid the body of unwanted intruders. A particular type of macrophage known as microglia are found throughout the brain and spinal cord - in progressive forms of MS, they attack the CNS, causing chronic inflammation and damage to .

Recent advances have raised expectations that diseases of the CNS may be improved by the use of . Stem cells are the body's 'master cells', which can develop into almost any type of cell within the body. Previous work from the Cambridge team has shown that transplanting neural stem cells (NSCs) - stem cells that are part-way to developing into nerve cells - reduces inflammation and can help the injured CNS heal.

However, even if such a therapy could be developed, it would be hindered by the fact that such NSCs are sourced from embryos and therefore cannot be obtained in large enough quantities. Also, there is a risk that the body will see them as an alien invader, triggering an to destroy them.

A possible solution to this problem would be the use of so-called 'induced neural stem cells (iNSCs)' - these cells can be generated by taking an adult's skin cells and 're-programming' them back to become . As these iNSCs would be the patient's own, they are less likely to trigger an immune response.

Now, in research published in the journal Cell Stem Cell, researchers at the University of Cambridge have shown that iNSCs may be a viable option to repairing some of the damage caused by MS.

Using mice that had been manipulated to develop MS, the researchers discovered that chronic MS leads to significantly increased levels of succinate, a small metabolite that sends signals to macrophages and microglia, tricking them into causing inflammation, but only in cerebrospinal fluid, not in the peripheral blood.

Transplanting NSCs and iNSCs directly into the cerebrospinal fluid reduces the amount of succinate, reprogramming the macrophages and microglia - in essence, turning 'bad' immune cells 'good'. This leads to a decrease in inflammation and subsequent secondary damage to the brain and spinal cord.

"Our mouse study suggests that using a patient's reprogrammed cells could provide a route to personalised treatment of chronic inflammatory diseases, including progressive forms of MS," says Dr Stefano Pluchino, lead author of the study from the Department of Clinical Neurosciences at the University of Cambridge.

"This is particularly promising as these should be more readily obtainable than conventional neural and would not carry the risk of an adverse immune response."

The research team was led by Dr Pluchino, together with Dr Christian Frezza from the MRC Cancer Unit at the University of Cambridge, and brought together researchers from several university departments.

Dr Luca Peruzzotti-Jametti, the first author of the study and a Wellcome Trust Research Training Fellow, says: "We made this discovery by bringing together researchers from diverse fields including regenerative medicine, cancer, mitochondrial biology, and stroke and cellular reprogramming. Without this multidisciplinary collaboration, many of these insights would not have been possible."

Explore further: Using donor stem cells to treat spinal cord injury

More information: Peruzzotti-Jametti, L et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell; 2018; 22: 1-14; DOI: doi.org/10.1016/j.stem.2018.01.20

Related Stories

Using donor stem cells to treat spinal cord injury

August 28, 2017
A new study in mice published in The Journal of Neuroscience details a potential therapeutic strategy that uses stem cells to promote recovery of motor activity after spinal cord injury.

Cellular hitchhikers aid recovery from spinal cord injury

January 8, 2018
The healing effects of stem cells in spinal cord injury can be aided by their ability to hitch intercellular rides to specific anti-inflammatory cells called M2 macrophages, Yale researchers report.

Cellular self-digestion process triggers autoimmune disease

December 13, 2017
Autophagy refers to a fundamental recycling process of cells that occurs in yeast, fungi, plants, as well as animals and humans. This process allows cells to degrade their own components and thus activate energy resources ...

Transplantation with induced neural stem cells improves stroke recovery in mice

October 11, 2016
In a study to determine whether induced neural stem cells (iNSCs), a type of somatic cell directly differentiated into neural stem cells, could exert therapeutic effects when transplanted into mice modeled with ischemic stroke, ...

'Educating' patients' immune cells may help combat diabetes

July 7, 2017
New research reveals that a treatment called Stem Cell Educator therapy is safe and effective for treating type 1 and type 2 diabetes. The therapy cultures the patient's immune cells with cord blood stem cells and returns ...

Neural stem cells steered by electric fields in rat brain

July 11, 2017
Electric fields can be used to guide neural stem cells transplanted into the brain towards a specific location. The research, published July 11 in the journal Stem Cell Reports, opens possibilities for effectively guiding ...

Recommended for you

Immune cell pruning of dopamine receptors may modulate behavioral changes in adolescence

September 25, 2018
A study by MassGeneral Hospital for Children (MGHfC) researchers finds that the immune cells of the brain called microglia play a crucial role in brain development during adolescence, but that role is different in males and ...

Scientists reverse a sensory impairment in mice with autism

September 25, 2018
Using a genetic technique that allows certain neurons in the brain to be switched on or off, UCLA scientists reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly ...

Researchers identify new cause of brain bleeds

September 25, 2018
A team of researchers including UCI project scientist Rachita Sumbria, Ph.D. and UCI neurologist Mark J. Fisher, MD have provided, for the first time, evidence that blood deposits in the brain may not require a blood vessel ...

Why it doesn't get dark when you blink

September 25, 2018
People blink every five seconds. During this brief moment, no light falls on the retina, yet people continue to observe a stable picture of the environment with no intervals of darkness. Caspar Schwiedrzik and Sandrin Sudmann, ...

Lung inflammation from childhood asthma linked with later anxiety

September 25, 2018
Persistent lung inflammation may be one possible explanation for why having asthma during childhood increases your risk for developing anxiety later in life, according to Penn State researchers.

Even mild physical activity immediately improves memory function, study finds

September 24, 2018
People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan's University of Tsukuba found that even very ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.