Personal cancer vaccines show positive results

March 6, 2018 by Benjamin Boettner, Harvard University
This scanning electron micrograph image shows the MSR-PEI scaffold presenting tumor-expressed peptides. After it’s injected under the skin of mice, the biomaterial fills with dendritic cells that can be seen here as small, round shapes interacting with the spiky scaffold structure. Credit: Wyss Institute at Harvard University

Immunotherapies are moving to the forefront of cancer treatment. Recent clinical trials have demonstrated that these approaches can be personalized to the unique mutations profile of each individual's tumor, igniting new hope for many patients, according to a new Harvard study.

At the base of these developments are tumor-specific "neoantigens," mutated peptides that tumor present on their surfaces. After taking up neoantigens, the immune system's dendritic cells (DCs) can initiate strong T to attack the very cancer cells that express them, meaning they stimulate patients' immune systems to destroy their own tumors. But despite that success, it has remained difficult to integrate different types of peptides into "cancer vaccines" that the immune system will accept.

The new study by a team of researchers at Harvard's Wyss Institute for Biologically Inspired Engineering, the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Dana-Farber Cancer Institute describes a approach that uses an injectable scaffold loaded with a selection of tumor-expressed peptides.

In a paper published in Nature Materials, Wyss Institute core faculty member David Mooney and his team explain how this strategy proved more effective at stimulating anti-tumor responses and, importantly, a tumor-specific immune memory in mouse models that kept the animals rejecting tumor cells at least half a year later.

"There is tremendous enthusiasm for using neoantigens in immunotherapy as predicting them in individual tumors becomes more and more reliable. Our materials approach is able to mix and match predicted neoantigens very easily and efficiently in a single scaffold that, as a delivery vehicle, could be plugged into existing pipelines to enable more effective personalized cancer treatments," said Mooney, who led the study. Mooney also leads the Wyss Institute's Immunomaterials Platform and is the Robert P. Pinkas Family Professor of Bioengineering at SEAS.

The scientists used their previously developed programmable biomaterial made from tiny mesoporous silica rods (MSRs) that can be injected under the skin, where they spontaneously assemble into a 3-D scaffold that attracts and stimulates DCs. They then coated the MSRs with polyethyleneimine (PEI), a polymer used previously to deliver DNA and proteins to cells. PEI has been surmised to have immune-stimulatory effects.

"This allowed us to achieve two things: It enabled ready absorption of multiple peptides regardless of their inherent properties without the need to further modify them; and by being taken up by DCs together with the peptides, PEI enhanced the stimulation of DCs and the ensuing tumor-directed cytotoxic T cell responses in our mouse models," said first-author Aileen Li, who performed her graduate work with Mooney and now is a postdoctoral fellow at the University of California, San Francisco.

In addition to the PEI coating, the vaccines also contained factors that help them attract DCs and boost immune functions. Comparing them to control vaccines that lacked PEI but had all the other components, the team found them considerably more efficient in activating DC populations, stimulating interactions with T cells in nearby lymph nodes and driving the generation of circulating killer T cells that recognize tumor-specific peptides.

Raising the strategy's clinical potential, these advances also translated to mouse models with more relevant tumors that the researchers investigated with a collaborating team lead by Kai Wucherpfennig, chair of the Dana-Farber Cancer Institute's Department of Cancer Immunology and Virology.

First, they designed a vaccine that presented a model peptide of the well-known E7 oncoprotein from human papilloma virus (HPV), which causes cervical and other cancers. Impressively, a single injection of the vaccine led to rapid and complete eradication of HPV tumors in mice, with 80 percent of the animals living longer than 150 days. In comparison, most untreated animals succumbed to the by 30 days, and a control vaccine lacking PEI and a traditionally formulated vaccine had effects only about half as strong. Even six months after the injection, the animals vaccinated with the PEI formulation could still destroy , showing that they had formed a robust immunological memory of the tumors.

The team mimicked potential future neoantigen approaches in human patients more closely by carrying out studies in more aggressive and difficult-to-treat tumor models.

"We introduced up to five neoantigens that had been recently identified in mouse melanoma and colorectal tumors into our biomaterial scaffold, and found that a single injection of the vaccines cleared metastases and provided strong immune responses against the tumors that were comparable to multiple injections with existing vaccines," said Li.

When combined with immune checkpoint therapy, which can broadly invigorate killer T cell activity against tumors, the effects of both the vaccine and the checkpoint therapy were boosted.

Different immune checkpoint therapies are currently performed in the clinic, but their effects in many patients and tumors remain weak. The team thinks that combining them with their biomaterial-supported neoantigen approach could help treat many patients more effectively.

Explore further: Personal neoantigen vaccine prompts strong anti-tumor response in patients, study shows

More information: A facile approach to enhance antigen response for personalized cancer vaccination, Nature Materials (2018). nature.com/articles/doi:10.1038/s41563-018-0028-2

Related Stories

Personal neoantigen vaccine prompts strong anti-tumor response in patients, study shows

July 5, 2017
A personal cancer treatment vaccine that targets distinctive "neoantigens" on tumor cells has been shown to stimulate a potent, safe, and highly specific immune anti-tumor response in melanoma patients, report scientists ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Researchers uncover novel mechanism by which tumors evade cancer immunotherapies

November 10, 2017
A Ludwig Cancer Research study led by Benoit Van den Eynde, Director of Ludwig Brussels, has identified a novel mechanism by which tumors of the aggressive skin cancer melanoma can resist cancer immunotherapy. Their paper, ...

Recommended for you

Eating foods with low nutritional quality ratings linked to cancer risk in large European cohort

September 18, 2018
The consumption of foods with higher scores on the British Food Standards Agency nutrient profiling system (FSAm-NPS), reflecting a lower nutritional quality, is associated with an increased risk of developing cancer, according ...

CRISPR screen reveals new targets in more than half of all squamous cell carcinomas

September 18, 2018
A little p63 goes a long way in embryonic development—and flaws in p63 can result in birth defects like cleft palette, fused fingers or even missing limbs. But once this early work is done, p63 goes silent, sitting quietly ...

Could the zika virus fight the brain cancer that killed john McCain?

September 18, 2018
(HealthDay)—Preliminary research in mice suggests that the Zika virus might be turned from foe into friend—enlisted to curb deadly glioblastoma brain tumors.

Enlarged genotype-phenotype correlation for a three-base pair deletion in neurofibromatosis type 1

September 18, 2018
International collaborative research led by Ludwine Messiaen, Ph.D., shows that while a three-base pair, in-frame deletion called p.Met992del in the NF1 gene has a mild phenotype for people with the genetic disorder neurofibromatosis ...

Your teen is underestimating the health risks of vaping

September 17, 2018
Teens today are more reluctant to smoke cigarettes than their counterparts nearly three decades ago, according to a study released this summer. But parents should hold their collective sigh of relief. The study, carried out ...

Artificial intelligence can determine lung cancer type

September 17, 2018
A new computer program can analyze images of patients' lung tumors, specify cancer types, and even identify altered genes driving abnormal cell growth, a new study shows.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.