Study reveals startlingly different tissue sensitivities to cancer-driving genes

March 22, 2018, Harvard Medical School
Credit: CC0 Public Domain

New research led by Harvard Medical School and Brigham and Women's Hospital has unmasked hundreds of cancer-driving genes and revealed that different tissue types have shockingly variable sensitivities to those genes.

The findings, published online in Cell on March 22, promise to improve scientists' understanding of normal and malignant cell proliferation. They also help explain why individual drivers appear in some tumors and not others and could inspire more -specific strategies for cancer treatment.

"Genes that regulate pancreatic cancer make pancreatic proliferate but not , and vice versa," said the study's senior author, Stephen Elledge, professor of medicine at Brigham and Women's and the Gregor Mendel Professor of Genetics and of Medicine at Harvard Medical School. "The degree to which we see different cells respond to different genes is unprecedented."

Hidden players

Although a certain amount of cell growth and division, or proliferation, is essential for maintaining health, cancer steps on the gas pedal so cells proliferate with abandon.

Some genes drive harmful proliferation because they've been mutated. Other genes remain intact but still fuel tumor growth because they've been turned on too high or been duplicated.

This video shows mammalian cells proliferation. The colors represent different phases of the cell cycle. Credit: Teresa Davoli, Elledge lab, Harvard Medical School

Scientists have had a hard time identifying these overactive genes because they don't get flagged by genetic sequencing. Elledge's lab, along with colleagues at the Dana-Farber Cancer Institute and Baylor College of Medicine, devised another way to find them.

The researchers built a library of 30,000 individually bar-coded genes, representing about 80 percent of the genome. They took a collection of cells and put one gene into each of them. Instead of using 30,000 separate lab dishes, they let the cells grow in the same container. After a few days, the cells had proliferated at different rates. The researchers then used the bar codes to determine which genes drove growth.

The team ran the experiment on cells from three types of noncancerous tissue: breast cells, and connective-tissue cells called fibroblasts.

A full 10 percent of the genes tested turned out to regulate proliferation. Some had already been linked to cancer by DNA sequencing studies, but many more had not.

About 250 of the genes that hadn't been previously associated with normal or abnormal cell proliferation can be found in tumors where large segments of DNA are repeatedly amplified or deleted, "suggesting they help drive cancer," said Elledge.

More different than alike

Even more startling were the distinctive ways in which each tissue type responded to the same gene activity.

"We didn't realize how profoundly different the tissues would be," said Elledge. "The closest two were 90 percent different."

Genes that drove proliferation in one tissue often had no effect, or even suppressed proliferation, in another.

"That was shocking to me," said Elledge. "One family of genes made breast cells grow as fast as the greatest oncogene and did nothing in these other cells."

Analyses of gene expression in cancerous tissue reinforced the researchers' findings. They discovered that the genes that drove proliferation only in breast tissue matched patterns of gene activity seen in certain breast cancers. Similarly, genes that drove proliferation only in pancreatic tissue matched those seen in pancreatic tumors known as adenocarcinomas.

The results suggest that tissue type plays a larger role than previously appreciated in cancer genetics and should be taken into greater account when devising treatments that aim to curb , Elledge said.

The insight could explain why drugs that target the same proliferation driver sometimes work in some cancers but not others.

"This work sounds a note of caution to those who wish to develop therapies for all tissue types based on one driver mutation," Elledge said. "Just because a proliferation-targeting drug works in one tissue doesn't mean it will work elsewhere."

A broader atlas

How many more proliferation-driving genes lurk in the rest of the body's tissues? Do tissue types respond in unique ways to hallmarks of cancer other than ?

The researchers have made their tool available so that the scientific community can investigate these and other questions.

"There are so many cancers and so few treatments; we're still building our tool kit of therapies," said Elledge. "This work suggests it's worth paying attention to this whole new set of ."

Explore further: Can mice really mirror humans when it comes to cancer?

Related Stories

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Study pinpoints gene's role in pancreatic cancer

August 11, 2017
Pancreatic cancer is a particularly deadly form of disease, and patients have few options for effective treatment. But a new Yale-led study has identified a gene that is critical to pancreatic cancer cell growth, revealing ...

Cancer may require simpler genetic mutations than previously thought

May 25, 2012
Chromosomal deletions in DNA often involve just one of two gene copies inherited from either parent. But scientists haven't known how a deletion in one gene from one parent, called a "hemizygous" deletion, can contribute ...

Shifting protein networks in breast cancer may alter gene function

November 30, 2017
A given gene may perform a different function in breast cancer cells than in healthy cells due to changes in networks of interacting proteins, according to a new study published in PLOS Computational Biology.

New cancer driver found: Monoclonal antibody therapy stops tumor growth in mice

May 8, 2013
(Medical Xpress)—Approximately 90 percent of cancers start within tissues that form the inner linings of various organs. Decades of accumulated genetic mutations can, on occasion, induce cells specialized for growth in ...

Pancreatic cancer development

September 1, 2017
Pancreatic ductal carcinoma (PDAC) is one of the most lethal types of cancer, with new therapeutic options needed.

Recommended for you

Analytical tool predicts genes that can cause disease by producing altered proteins

July 19, 2018
Predicting genes that can cause disease due to the production of truncated or altered proteins that take on a new or different function, rather than those that lose their function, is now possible thanks to an international ...

Childhood stress leaves lasting mark on genes

July 18, 2018
Kids who experience severe stress are more likely to develop a host of physical and mental health problems by the time they reach adulthood, including anxiety, depression and mood disorders. But how does early life stress ...

Study shows DNA methylation related to liver disease among obese patients

July 18, 2018
DNA methylation is a molecular process that helps enable our bodies to repair themselves, fight infection, get rid of environmental toxins, and even to think. But sometimes this process goes awry.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

World's largest study on allergic rhinitis reveals new risk genes

July 17, 2018
An international team of scientists led by Helmholtz Zentrum München and University of Copenhagen has presented the largest study so far on allergic rhinitis in the journal Nature Genetics. The data of nearly 900,000 participants ...

New platform poised to be next generation of genetic medicines

July 16, 2018
A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.