The relevance of GABA for diabetes highlighted in two new studies

April 5, 2018, Uppsala University

Dynamic interactions between the nervous system, hormones and the immune system are normally ongoing, but in diabetes the balance is disturbed. Two studies published in EBioMedicine by an international research team from Uppsala University highlight the importance of the neurotransmitter beta-aminobutyric acid (GABA) in both Type 1 and Type 2 diabetes.

GABA is synthesized by an enzyme called GAD from the amino acid glutamate in nerve cells but also in the in . GAD has two forms, GAD65 and GAD67. In type 1 , beta cells are destroyed while type 2 diabetes is associated with impaired beta cell function and insulin resistance. Patients with type 1 diabetes often have antibodies to GAD65. However, there has been no strong link between GABA and type 2 diabetes until recently, when it was shown that GABA is important for maintaining and potentially also in the making of new beta cells.

The new studies reinforce the image of GABA's importance for both types of diabetes. The scientists used ion channels that GABA opens, the GABAA receptors, as a biological sensor for GABA, and were able to determine the effective, physiological GABA concentration levels in human pancreatic islets. They also showed that these ion channels became more sensitive to GABA in type 2 diabetes and that GABA helps regulate insulin secretion (Article 1).

The scientists then isolated immune cells from human blood and studied the effects GABA had on these cells. They show that GABA inhibited the cells and reduced the secretion of a large number of inflammatory molecules (Article 2).

The anti-inflammatory effect of GABA may be vital in the pancreatic islets since as long as GABA is present, toxic can be inhibited, thus increasing the survival of the insulin-secreting beta cells. When the beta cells decrease in number and disappear from the islets as happens in Type 1 diabetes, then GABA consequently is also decreased and, thereby, the GABA protective shielding of the beta cells. When inflammatory molecules increase in strength, it may weaken and even kill the remaining beta cells.

In ongoing studies, the scientists now focus on clarifying the GABA signaling mechanisms in the and in the human . They will also study how existing drugs can increase, decrease or mimic the effects of GABA, says Bryndis Birnir.

Explore further: Novel type 1 diabetes treatment shown to work on human beta cells transplanted into mice

More information: Amol K. Bhandage et al, GABA Regulates Release of Inflammatory Cytokines From Peripheral Blood Mononuclear Cells and CD4 + T Cells and Is Immunosuppressive in Type 1 Diabetes, EBioMedicine (2018). DOI: 10.1016/j.ebiom.2018.03.019

Related Stories

Novel type 1 diabetes treatment shown to work on human beta cells transplanted into mice

November 25, 2014
A chemical produced in the pancreas that prevented and even reversed Type 1 diabetes in mice had the same effect on human beta cells transplanted into mice, new research has found.

Early research shows dietary supplement may lower risk of developing type 2 diabetes

September 22, 2011
UCLA researchers demonstrated that an over-the-counter dietary supplement may help inhibit development of insulin resistance and glucose intolerance, conditions that are involved in the development of Type 2 diabetes and ...

Chemical produced in pancreas prevented and reversed diabetes in mice

June 28, 2011
A chemical produced by the same cells that make insulin in the pancreas prevented and even reversed Type 1 diabetes in mice, researchers at St. Michael's Hospital have found.

Insulin release is controlled by the amount of Epac2A at the secretory vesicles

July 7, 2017
Specialized beta cells in the pancreas release the hormone insulin to control our blood glucose levels, and failure of this mechanism is central to the development of type-2 diabetes. How much and when insulin is released ...

Protein packaging may cause the immune attacks of type 1 diabetes

November 21, 2016
Type-1 diabetes occurs when immune cells attack the pancreas. EPFL scientists have now discovered what may trigger this attack, opening new directions for treatments.

Study identifies immune cells that promote growth of beta cells in type 1 diabetes

September 27, 2013
Joslin researchers have identified immune cells that promote growth of beta cells in type 1 diabetes. This study provides further evidence of a changed role for immune cells in type 1 diabetes pathology. The study appears ...

Recommended for you

Kidney cells engineered to produce insulin when caffeine is present in the body

June 22, 2018
A team of researchers from ETH Zurich and the University of Basel in Switzerland and Institut Universitaire de Technologie in France has that found that embryonic kidney cells engineered to produce insulin when exposed to ...

Diagnosing diabetes from a single blood sample

June 18, 2018
Diagnosing type 2 diabetes in clinical practice may require only a single blood sample, according to a study led by researchers at Johns Hopkins Bloomberg School of Public Health.

Lentils significantly reduce blood glucose levels, study reveals

June 13, 2018
Replacing potatoes or rice with pulses can lower your blood glucose levels by more than 20 per cent, according to a first-ever University of Guelph study.

Is there a link between diabetes and Parkinson's disease?

June 13, 2018
People with type 2 diabetes may have an increased risk of having a diagnosis of Parkinson's disease later in life, according to a large study published in the June 13, 2018, online issue of Neurology, the medical journal ...

Double-checking diabetes medications may reduce re-hospitalizations

June 11, 2018
Clinicians may take upwards of 15 minutes to double-check a patient's medication list in an electronic health record system, but according to a new study, this reconciliation process may be well worth the time for diabetes ...

How a gene linked to obesity could provide new insights into diabetes

June 8, 2018
A gene previously linked with obesity has been found to affect how the body processes insulin, with potential implications for some forms of diabetes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.