Cancer gene dependency maps help reveal proteins' relationships

May 17, 2018 by Tom Ulrich, Broad Institute of MIT and Harvard
Cancer gene dependency maps help reveal proteins' relationships
Two members of the SWI/SNF protein complex. Credit: RCSB Protein Data Bank

By merging cancer functional genetic data with information on protein interactions, scientists can explore protein complexes at massive scale.

"Dependency" mapping reveals the genetic adaptations make to survive. And while this approach is helping identify promising treatment strategies for several cancer types, researchers have now found that it also provides an opportunity to probe the intricacies of interactions.

While sequencing efforts have likely identified nearly all genes involved in cancer, studies of those genes' protein products and how they interact have been much more difficult. Because proteins work together to drive the lion's share of cellular activities, the ability to explore those interactions at scale could provide insight into all manner of biological processes.

Reporting in Cell Systems, a team led at the Broad by graduate student Joshua Pan, computational biologist Robin Meyers, Cancer Data Science group associate director Aviad Tsherniak, and institute member and Epigenomics Program co-director Cigall Kadoch of the Dana-Farber Cancer Institute, describe how by combining genome-scale dependency data from the Broad Cancer Program's Dependency Map (DepMap) project with large, existing protein interaction datasets, they created a framework for examining protein complexes (assemblies of proteins that carry out coordinated tasks, such as gene transcription).

The team's underlying hypothesis was that:

  • When a gene is knocked out (with CRISPR) or silenced (with RNA interference), the cell can no longer make that gene's protein product. The cell's functional state or survival (it's "fitness") changes as a result.
  • Two proteins whose losses have similar fitness effects likely perform similar functions, and may even be members of the same .
  • By profiling in pooled screens how all these knock-outs affect cell fitness, and comparing those profiles across hundreds of cancer cell lines, researchers can group proteins by functions and interactions, probe the roles of known protein complex members, and highlight previously unrecognized ones.

The DepMap dataset, which included CRISPR data on 342 cancer cell lines and RNAi data on 501, provided a perfect starting point. Integrating these data with those from seven recent protein interaction datasets, the team developed computer models that scored and grouped the components of hundreds of human protein complexes based on their effects on cell fitness. Those fitness groupings fell into patterns aligning with the proteins' functions and biochemical relationships.

Benchmarked against well-studied complexes, the team's models accurately captured known lists of component proteins in their makeup, modular hierarchy, and even structural relationships. The models also pointed out subunits shared between different, functionally distinct complexes, and identified previously unrecognized components of a complex called SWI/SNF or BAF (members of which are often mutated in cancer).

The researchers think their models will only increase in power as new fitness or dependency data from additional cell lines become available, and could help illuminate the effects disease-associated genetic variants or structural changes have on protein interactions and disease biology.

Explore further: Editing false positives from cancer dependency maps drawn with CRISPR

More information: Joshua Pan et al. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens, Cell Systems (2018). DOI: 10.1016/j.cels.2018.04.011

Related Stories

Editing false positives from cancer dependency maps drawn with CRISPR

October 31, 2017
The Broad Cancer Dependency Map team adds CRISPR-based data from 342 cancer cell lines to their growing catalog of genetic dependencies in cancer, and a new method for ensuring that data's accuracy.

Shifting protein networks in breast cancer may alter gene function

November 30, 2017
A given gene may perform a different function in breast cancer cells than in healthy cells due to changes in networks of interacting proteins, according to a new study published in PLOS Computational Biology.

Researchers identify an indirect way of countering a key genetic lesion in neuroblastoma

December 5, 2017
Pediatric cancers tend to have relatively "quiet" genomes compared to tumors in adults. They harbor fewer discrete genetic mutations, especially in genes for readily "druggable" targets (such as protein kinases). Instead, ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Recommended for you

Study finds gut microbiome can control antitumor immune function in liver

May 24, 2018
Scientists have found a connection between bacteria in the gut and antitumor immune responses in the liver. Their study, published May 25 in Science, was led by researchers in the Center for Cancer Research (CCR) at the National ...

Low-fat diet tied to better breast cancer survival

May 24, 2018
(HealthDay)—Breast cancer patients who adopted a low-fat diet were more likely to survive for at least a decade after diagnosis, compared to patients who ate fattier fare, new research shows.

By forming clots in tumors, immune cell aids lung cancer's spread

May 24, 2018
University of North Carolina Lineberger Comprehensive Cancer Center researchers have found that by helping to form clots within tumors, immune cells that flock to a particular type of lung cancer are actually building a foundation ...

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

Cancer cells co-opt pain-sensing 'wasabi receptor' to survive oxidative stress

May 24, 2018
Anyone who's taken a bite of a sandwich with too much spicy mustard or a piece of sushi with too much wasabi can attest to the tear-inducing sensation these condiments can cause. These loud warnings to the nervous system ...

Tumor cells evade death through in extremis DNA repair

May 24, 2018
Greater knowledge of the mechanisms that contribute to the survival of tumour cells is key to vanquishing them. The study published today in the journal Cancer Cell, headed by Angel R. Nebreda, ICREA researcher at the Institute ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.