Diverse Parkinson's-related disorders may stem from different strains of same protein

May 9, 2018, Perelman School of Medicine at the University of Pennsylvania
(A) α-Synuclein aggregations in Parkinson's disease (PD) and multiple system atrophy (MSA) patients. (B) GCI-α-Syn and LB-α-Syn strains do not have cell-type preferences and they can both be initiated by the same misfolded α-Syn seeds (grey spheres), but different intracellular environments of neurons and oligodendrocytes convert these α-Syn seeds to different strains. Credit: Virginia Lee, PhD, Perelman School of Medicine, University of Pennsylvania; Nature

Different Parkinson's-related brain disorders, called synucleionpathies, are characterized by misfolded proteins embedded in cells. Researchers in the Perelman School of Medicine at the University of Pennsylvania found that the type of brain cell afflicted dictates which pathological form of α-synuclein (α-syn) protein becomes the disease culprit. The team's results were published this week in Nature.

"These unexpected findings of the effect of cell type on the generation of different α-syn strains addresses one of the most important mysteries in neurodegenerative disease research," said first author Chao Peng, PhD, a research associate in the Center for Neurodegenerative Disease Research (CNDR).

The relationship between cell type and variety of disease protein has not been described for any other neurodegenerative brain disorder. For now, the hope is that one strain associated with multiple system atrophy (MSA) might point the way to new therapies.

What had been known before this Nature study is that in cases of Parkinson's disease without and with dementia, dementia with Lewy bodies, and in about 50 percent of Alzheimer's disease patients, α-syn aggregates in neurons as Lewy bodies (LBs) and Lewy neurites in axons and dendrites. However, in MSA, a rare neurodegenerative disease with widespread effects on the brain and body, α-syn behaves differently. It mainly accumulates as glial cytoplasmic inclusions (GCIs) outside the nucleus in the cytoplasm of oligodendrocytes, a brain structural cell important for myelin production (the insulation material of nerve cell fibers).

The Penn team found that pathological α-syn in GCIs versus LBs are distinct in shape and biology. The α-syn in GCIs forms more compact structures and is about 1,000-fold more potent in seeding and spreading α-syn aggregation in animal models, which is consistent with the highly aggressive nature of MSA.

"Years ago we found that α-syn fibrils act as 'seeds' that induce normal α-syn protein to aggregate into clumps," said senior author Virginia M.-Y. Lee, PhD, CNDR director and a professor of Pathology and Laboratory Medicine. "We showed that α-syn fibrils were taken up by healthy neurons, which leads to the formation of Lewy bodies and neurites that impair neuron function, leading to nerve cell death."

Surprisingly, say the researchers, pathological α-syn in GCIs and LBs did not show a preference for a specific cell type in starting pathology when human brain-derived α-syn of each type was used to induce aggregates in cell culture and mouse models.

"This raises the question of why α-syn pathology in Parkinson's disease versus shows different potencies, properties, and distributions in neurons versus glial ," Lee said.

The researchers also found that oligodendrocytes, but not neurons, transform misfolded α-syn into the cytoplasmic strain, which explains the distribution of the two forms by cell type. On the other hand, cytoplasmic α-syn maintains its active seeding function when propagated from neuron to neuron. From this, the researchers concluded that α-syn strains are determined by both misfolded α-syn seeds and cell type.

The team's next steps will be to uncover the underlying molecular mechanism for the differences between the strains. The molecules in oligodendrocytes responsible for the highly potent cytoplasmic strain might suggest viable drug targets for MSA and explain why therapies used to treat other synucleinopathies may not work for MSA patients.

Explore further: Researchers uncover culprit in Parkinson's brain cell die-off

More information: Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies, Nature (2018). nature.com/articles/doi:10.1038/s41586-018-0104-4

Related Stories

Researchers uncover culprit in Parkinson's brain cell die-off

March 5, 2018
An estimated 10 million people worldwide are living with Parkinson's disease—an incurable neurodegenerative disorder that leads to an increasing loss of motor control.

Parkinson's disease protein gums up garbage disposal system in cells

March 28, 2013
(Medical Xpress)—Clumps of α-synuclein protein in nerve cells are hallmarks of many degenerative brain diseases, most notably Parkinson's disease.

Seeds of destruction in Parkinson's disease: Spread of diseased proteins kills neurons

October 5, 2011
New research suggests that small "seed" amounts of diseased brain proteins can be taken up by healthy neurons and propagated within them to cause neurodegeneration. The research, published by Cell Press in the October 6 issue ...

Parkinson's disease protein causes disease spread and neuron death in healthy animals

November 15, 2012
Understanding how any disease progresses is one of the first and most important steps towards finding treatments to stop it. This has been the case for such brain-degenerating conditions as Alzheimer's disease. Now, after ...

Parkinson's protein causes disease spread in animal model, suggesting way disorder progresses over time in humans

April 17, 2012
(Medical Xpress) -- Penn researchers have shown that brain tissue from a Parkinson's disease mouse model , as well as synthetically produced disease protein fibrils, injected into young, symptom-free PD mice led to spreading ...

Team describes new models for testing Parkinson's disease immune-based drugs

June 12, 2014
Using powerful, newly developed cell culture and mouse models of sporadic Parkinson's disease (PD), a team of researchers from the Perelman School of Medicine at the University of Pennsylvania, has demonstrated that immunotherapy ...

Recommended for you

Researchers find inhibiting one protein destroys toxic clumps seen in Parkinson's disease

November 14, 2018
A defining feature of Parkinson's disease is the clumps of alpha-synuclein protein that accumulate in the brain's motor control area, destroying dopamine-producing neurons. Natural processes can't clear these clusters, known ...

Scalpel-free surgery enhances quality of life for Parkinson's patients, study finds

November 9, 2018
A high-tech form of brain surgery that replaces scalpels with sound waves improved quality of life for people with Parkinson's disease that has resisted other forms of treatment, a new study has found.

Singing may reduce stress, improve motor function for people with Parkinson's disease

November 7, 2018
Singing may provide benefits beyond improving respiratory and swallow control in people with Parkinson's disease, according to new data from Iowa State University researchers.

Scientists overturn odds to make Parkinson's discovery

November 7, 2018
Scientists at the University of Dundee have confirmed that a key cellular pathway that protects the brain from damage is disrupted in Parkinson's patients, raising the possibility of new treatments for the disease.

Road to cell death more clearly identified for Parkinson's disease

November 1, 2018
In experiments performed in mice, Johns Hopkins researchers report they have identified the cascade of cell death events leading to the physical and intellectual degeneration associated with Parkinson's disease.

Appendix removal is linked to lower risk of Parkinson's

October 31, 2018
Scientists have found a new clue that Parkinson's disease may get its start not in the brain but in the gut—maybe in the appendix.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.